[1] 刘诗群, 孙丛涛, 牛荻涛. 钢筋腐蚀临界氯离子浓度研究综述[J]. 硅酸盐通报, 2014, 33(1): 83-91. LIU S Q, SUN C T, NIU D T. Research review of critical chloride concentration in the corrosion of steel bar[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 83-91 (in Chinese). [2] TIAN Y, ZHANG G Y, YE H L, et al. Corrosion of steel rebar in concrete induced by chloride ions under natural environments[J]. Construction and Building Materials, 2023, 369: 130504. [3] SHI X M, XIE N, FORTUNE K, et al. Durability of steel reinforced concrete in chloride environments: an overview[J]. Construction and Building Materials, 2012, 30: 125-138. [4] ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete: a review[J]. Cement and Concrete Research, 2009, 39(12): 1122-1138. [5] ANN K Y, SONG H W. Chloride threshold level for corrosion of steel in concrete[J]. Corrosion Science, 2007, 49(11): 4113-4133. [6] 施锦杰, 孙 伟. 苯并三唑对模拟混凝土孔溶液中钢筋的阻锈作用[J]. 功能材料, 2010, 41(12): 2147-2150. SHI J J, SUN W. Study of benzotriazole as corrosion inbibitor of reinforcing steel in simulated concrete pore solution[J]. Journal of Functional Materials, 2010, 41(12): 2147-2150 (in Chinese). [7] 许 晨, 金伟良, 章思颖. 氯盐侵蚀混凝土结构延寿技术初探Ⅰ: 模拟孔隙液中6种胺类有机物阻锈性能分析[J]. 建筑材料学报, 2014, 17(4): 572-578. XU C, JIN W L, ZHANG S Y. Preliminary study on service life extension of concrete structures under chloride environment: effectiveness of six amine-based inhibitors for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Building Materials, 2014, 17(4): 572-578 (in Chinese). [8] 徐永模. 迁移性阻锈剂: 钢筋混凝土阻锈剂的新发展[J]. 硅酸盐学报, 2002, 30(1): 94-101. XU Y M. Migrating corrosion inhibitor: a new development of corrosion inhibitors for steel bar in concrete[J]. Journal of the Chinese Ceramic Society, 2002, 30(1): 94-101 (in Chinese). [9] AHAMAD I, QURAISHI M A. Bis (benzimidazol-2-yl) disulphide: an efficient water soluble inhibitor for corrosion of mild steel in acid media[J]. Corrosion Science, 2009, 51(9): 2006-2013. [10] ZHANG F, TANG Y M, CAO Z Y, et al. Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid[J]. Corrosion, 2012, 61: 1-9. [11] 陈翠翠, 周伟玲, 刘加平. 新型有机阻锈剂对钢筋的阻锈作用[J]. 建筑材料学报, 2011, 14(1): 136-139+144. CHEN C C, ZHOU W L, LIU J P. Efficiency of new organic corrosion inhibitor for rebar in concrete[J]. Journal of Building Materials, 2011, 14(1): 136-139+144 (in Chinese). [12] 马 麒, 蔡景顺, 穆 松, 等. 阻锈剂在模拟孔隙液和混凝土中对钢筋的阻锈作用[J]. 材料导报, 2022, 36(23): 149-156. MA Q, CAI J S, MU S, et al. Corrosion inhibitor’s effect on steel bar in simulated pore fluid and concrete[J]. Materials Reports, 2022, 36(23): 149-156 (in Chinese). [13] VALEK L, MARTINEZ S, MIKULIC' D, et al. The inhibition activity of ascorbic acid towards corrosion of steel in alkaline media containing chloride ions[J]. Corrosion Science, 2008, 50(9): 2705-2709. [14] TIAN H, LI W H, WANG D P, et al. Adsorption mechanism of nicotinic acid onto a passive iron surface[J]. ACTA Physico-Chimica Sinica, 2012, 28: 137-145. [15] 林 冰. 模拟碳化混凝土孔隙液中几种有机缓蚀剂对碳钢的缓蚀作用[D]. 北京: 北京化工大学, 2019. LIN B. Study on inhibition effect of some organic inhibitors on carbon steel in carbonated simulatied concrete pore solutions[D]. Beijing: Beijing University of Chemical Technology, 2019 (in Chinese). [16] 李晓刚. 材料腐蚀与防护概论[M]. 2版. 北京: 机械工业出版社, 2017: 234-235. LI X G. Introduction to material corrosion and protection[M]. 2nd ed. Beijing: Machinery Industry Press, 2017: 234-235 (in Chinese). [17] SOLMAZ R. Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5 M HCl solution[J]. Corrosion, 2014, 81: 75-84. [18] FAZAYEL A S, KHORASANI M, SARABI A A. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution[J]. Applied Surface Science, 2018, 441: 895-913. [19] 张召才. 钢筋混凝土的玉米蛋白阻锈剂研制及其阻锈机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. ZHANG Z C. Development of zein corrosion inhibitor for reinforced concrete and its corrosion inhibition mechanism[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [20] CUI L, HANG M Y, HUANG H H, et al. Experimental study on multi-component corrosion inhibitor for steel bar in chloride environment[J]. Construction and Building Materials, 2021, 313: 125533. [21] LIU J P, CAI J S, SHI L, et al. The inhibition behavior of a water-soluble silane for reinforcing steel in 3.5% NaCl saturated Ca(OH)2 solution[J]. Construction and Building Materials, 2018, 189: 95-101. [22] UMOREN S A, EDUOK U M. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: a review[J]. Carbohydrate Polymers, 2016, 140: 314-341. [23] JIANG X, ZHENG Y G, KE W. Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution[J]. Corrosion, 2005, 47(11): 2636-2658. [24] NEVILLE A, WANG C. Erosion-corrosion mitigation by corrosion inhibitors: an assessment of mechanisms[J]. Wear, 2009, 267(1/2/3/4): 195-203. [25] SINGH I. Inhibition of steel corrosion by thiourea derivatives[J]. Corrosion, 1993, 49(6): 473-478. [26] 陈雪松. 绿色环保型阻垢缓蚀剂的制备及其机理研究[D]. 大庆: 东北石油大学, 2021. CHEN X S. Preparation and mechanism study of environment-friendly scale and corrosion inhibitor[D]. Daqing: Northeast Petroleum University, 2021 (in Chinese). [27] CARRANZA M S S, REYES Y I A, GONZALES E C, et al. Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel[J]. Heliyon, 2021, 7(9): e07952. |