[1] BAI G, WANG L, MA G W, et al. 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates[J]. Cement and Concrete Composites, 2021, 120: 104037. [2] XIAO J Z, JI G C, ZHANG Y M, et al. Large-scale 3D printing concrete technology: current status and future opportunities[J]. Cement and Concrete Composites, 2021, 122: 104115. [3] ZHANG Y, ZHANG Y S, SHE W, et al. Rheological and harden properties of the high-thixotropy 3D printing concrete[J]. Construction and Building Materials, 2019, 201: 278-285. [4] 肖建庄, 秦 飞, 丁 陶, 等. 3D打印再生砂浆的早期性能[J]. 建筑材料学报, 2022, 25(7): 657-662. XIAO J Z, QIN F, DING T, et al. Early age behavior of 3D printing recycled mortar[J]. Journal of Building Materials, 2022, 25(7): 657-662 (in Chinese). [5] CHEN Y N, ZHANG Y M, XIE Y D, et al. Unraveling pore structure alternations in 3D-printed geopolymer concrete and corresponding impacts on macro-properties[J]. Additive Manufacturing, 2022, 59: 103137. [6] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [7] XIAO J Z, HAN N, ZHANG L H, et al. Mechanical and microstructural evolution of 3D printed concrete with polyethylene fiber and recycled sand at elevated temperatures[J]. Construction and Building Materials, 2021, 293: 123524. [8] LI Z J, WANG L, MA G W. Method for the enhancement of buildability and bending resistance of 3D printable tailing mortar[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 37. [9] LI Z J, WANG L, MA G W. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions[J]. Composites Part B: Engineering, 2020, 187: 107796. [10] XIAO J Z, CHEN Z X, DING T, et al. Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces[J]. Cement and Concrete Composites, 2022, 125: 104313. [11] 张 静, 邹道勤, 王海龙, 等. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185+2214. ZHANG J, ZOU D Q, WANG H L, et al. Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(11): 2178-2185+2214 (in Chinese). [12] 张 超, 邓智聪, 汪智斌, 等. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878+1888. ZHANG C, DENG Z C, WANG Z B, et al. Effects of fibers on printing performance and mechanical properties of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1870-1878+1888 (in Chinese). [13] MARCHMENT T, SANJAYAN J. Mesh reinforcing method for 3D concrete printing[J]. Automation in Construction, 2020, 109: 102992. [14] LIM S, BUSWELL R A, LE T T, et al. Developments in construction-scale additive manufacturing processes[J]. Automation in Construction, 2012, 21: 262-268. [15] FENG P, MENG X M, ZHANG H Q. Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials[J]. Composite Structures, 2015, 134: 331-342. [16] 李之建, 马国伟, 王 里. 3D打印连续微筋混凝土梁受弯承载力试验研究[J]. 实验力学, 2021, 36(4): 516-524. LI Z J, MA G W, WANG L. Experimental study on the bending capacity of 3D printed continuous micro-reinforcement reinforced concrete beams[J]. Journal of Experimental Mechanics, 2021, 36(4): 516-524 (in Chinese). [17] 白生翔, 黄成若. 钢筋混凝土构件试验数据集(85年设计规范背景资料续编)[R]. 中国建筑设计研究院, 1985. BAI S X, HUANG C R. Test data set of reinforced concrete members (continuation of the background information of the design code in 1985)[R]. China Architecture Design Group, 1985 (in Chinese). |