[1] PAOLINI A, KOLLMANNSBERGER S, RANK E. Additive manufacturing in construction: a review on processes, applications, and digital planning methods[J]. Additive Manufacturing, 2019, 30: 100894. [2] LIU J L, NGUYEN-VAN V, PANDA B, et al. Additive manufacturing of sustainable construction materials and form-finding structures: a review on recent progresses[J]. 3D Printing and Additive Manufacturing, 2022, 9(1): 12-34. [3] CAMACHO D D, CLAYTON P, O’BRIEN W J, et al. Applications of additive manufacturing in the construction industry: a forward-looking review[J]. Automation in Construction, 2018, 89: 110-119. [4] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete: technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36. [5] 王 里, 林文宇, 姜海龙. 3D打印风积沙混凝土抗碳化性能试验研究[J]. 长沙理工大学学报(自然科学版), 2022, 19(4): 64-74. WANG L, LIN W Y, JIANG H L. Experimental study on carbonation resistance of 3D printed concrete with aeolian sand[J]. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(4): 64-74 (in Chinese). [6] 王云峰. 养护龄期对粉煤灰混凝土抗碳化性能影响研究[J]. 铁道建筑技术, 2022(8): 10-14. WANG Y F. Study on the effect of curing period on carbonation resistance of fly ash concrete[J]. Railway Construction Technology, 2022(8): 10-14 (in Chinese). [7] 陈 雯. 后掺骨料混凝土抗碳化性能试验研究[D]. 大连: 大连理工大学, 2022. CHEN W. Experimental study on anti-carbonation performance of after-mixing coarse aggregate concrete[D].Dalian: Dalian University of Technology, 2022 (in Chinese). [8] 李阳阳. 再生骨料掺量对混凝土碳化性能影响研究[D]. 西安: 西安科技大学, 2021. LI Y Y. Influence of recycled aggregate content on carbonation performance of concrete[D].Xi’an: Xi’an University of Science and Technology, 2021 (in Chinese). [9] 罗祖赟. PVA纤维改性对混凝土抗碳化性能的影响研究[D]. 武汉: 华中科技大学, 2021. LUO Z Y. Study on effect of PVA fiber modification on carbonation resistance of concrete[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese). [10] ZHANG Y, ZHANG Y S, SHE W, et al. Rheological and harden properties of the high-thixotropy 3D printing concrete[J]. Construction and Building Materials, 2019, 201: 278-285. [11] 王 里, 王伯林, 白 刚, 等. 3D打印混凝土各向异性力学性能研究[J]. 实验力学, 2020, 35(2): 243-250. WANG L, WANG B L, BAI G, et al. Experimental study on the mechanical anisotropy of 3D printed concrete[J]. Journal of Experimental Mechanics, 2020, 35(2): 243-250 (in Chinese). [12] SUN X Y, WANG Q, WANG H L, et al. Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink[J]. Construction and Building Materials, 2020, 247: 118590. [13] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566. [14] 张 静. 3D打印混凝土本构模型与梁的受弯性能研究[D]. 杭州: 浙江大学, 2021. ZHANG J. Constitutive model of 3D printed concrete and flexural behavior of beams [D]. Hangzhou: Zhejiang University, 2021 (in Chinese). [15] 张大旺, 王栋民. 3D打印混凝土材料及混凝土建筑技术进展[J]. 硅酸盐通报, 2015, 34(6): 1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588 (in Chinese). [16] 汪 群. 3D打印混凝土拱桥结构关键技术研究[D]. 杭州: 浙江大学, 2019. WANG Q. Research on the pivotal technology of 3D printed concrete arch bridge[D].Hangzhou: Zhejiang University, 2019 (in Chinese). [17] SUN X Y, ZHOU J W, WANG Q, et al. PVA fibre reinforced high-strength cementitious composite for 3D printing: mechanical properties and durability[J]. Additive Manufacturing, 2022, 49: 102500. [18] HOUST Y F, WITTMANN F H. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste[J]. Cement and Concrete Research, 1994, 24(6): 1165-1176. |