[1] 张登辉. 3D打印纤维增强高分子复合材料的各向异性研究[D]. 南京: 南京航空航天大学, 2019. ZHANG D H. Investigation on anisotropy of fiber reinforced polymer composites in 3D printing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). [2] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete: technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36. [3] ZHANG J C, WANG J L, DONG S F, et al. A review of the current progress and application of 3D printed concrete[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105533. [4] PANDA B, RUAN S Q, UNLUER C, et al. Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing[J]. Composites Part B: Engineering, 2020, 186: 107826. [5] 余 盈, 李 犇, 许亮军, 等. 玄武岩纤维对3D打印再生水泥基材料性能的影响研究[J]. 混凝土与水泥制品, 2021(12): 45-49. YU Y, LI B, XU L J, et al. Research on the influence of basalt fiber on the properties of 3D printed recycled cement-based materials[J]. China Concrete and Cement Products, 2021(12): 45-49 (in Chinese). [6] 白 刚, 王 里, 王 芳, 等. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069. BAI G, WANG L, WANG F, et al. Investigation of the printability and mechanical properties of 3D printing UHPC[J]. Materials Reports, 2021, 35(12): 12063-12069 (in Chinese). [7] ZHANG Y, ZHANG Y S, YANG L, et al. Hardened properties and durability of large-scale 3D printed cement-based materials[J]. Materials and Structures, 2021, 54(1): 45. [8] 李维红, 王 乾, 陈旭浩, 等. 纤维对3D打印水泥基材料力学性能的影响[J]. 实验力学, 2021, 36(4): 499-506. LI W H, WANG Q, CHEN X H, et al. Effect of fiber on mechanical properties of 3D printing cement-based materials[J]. Journal of Experimental Mechanics, 2021, 36(4): 499-506 (in Chinese). [9] ZHANG Y, ZHU Y M, REN Q, et al. Comparison of printability and mechanical properties of rigid and flexible fiber-reinforced 3D printed cement-based materials[J]. Construction and Building Materials, 2023, 400: 132750. [10] 周港明, 杭美艳, 路 兰, 等. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 109-113. ZHOU G M, HANG M Y, LU L, et al. Material parameters and anisotropy research of 3D printing mortar after incorporating with aeolian sand[J]. Materials Reports, 2022, 36(9): 109-113 (in Chinese). [11] PANDA B, TAN M J. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application[J]. Materials Letters, 2019, 237: 348-351. [12] LIU Z X, LI M Y, WENG Y W, et al. Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing[J]. Construction and Building Materials, 2019, 198: 245-255. [13] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [14] 李维红, 常西栋, 王 乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3101-3107+3114. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107+3114 (in Chinese). [15] 杨钱荣, 赵宗志, 肖建庄, 等. 矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2): 412-418. YANG Q R, ZHAO Z Z, XIAO J Z, et al. Effect of mineral admixtures and chemical admixtures on performance of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(2): 412-418 (in Chinese). [16] 赵 宇, 武喜凯, 朱伶俐, 等. 玄武岩纤维对3D打印水泥基材料可打印性的影响[J]. 复合材料学报, 2022, 39(11): 5537-5547. ZHAO Y, WU X K, ZHU L L, et al. Influence of basalt fiber on the printability of 3D printing cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5537-5547 (in Chinese). [17] BONG S H, NEMATOLLAHI B, NAZARI A, et al. Fresh and hardened properties of 3D printable geopolymer cured in ambient temperature[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham: Springer, 2019: 3-11. [18] SUREHALI S, TRIPATHI A, NIMBALKAR A S, et al. Anisotropic chloride transport in 3D printed concrete and its dependence on layer height and interface types[J]. Additive Manufacturing, 2023, 62: 103405. [19] 宁 波, 刘苗苗, 王文飞. 偏高岭土混凝土的耐久性与水化特性分析[J]. 矿产综合利用, 2022(6): 49-54+60. NING B, LIU M M, WANG W F. Analysis of durability and hydration characteristics of metakaolin concrete[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 49-54+60 (in Chinese). [20] 汪 群. 3D打印混凝土拱桥结构关键技术研究[D]. 杭州: 浙江大学, 2019. WANG Q. Research on the pivotal technology of 3D printed concrete arch bridge[D].Hangzhou: Zhejiang University, 2019 (in Chinese). [21] 王 里, 王伯林, 白 刚, 等. 3D打印混凝土各向异性力学性能研究[J]. 实验力学, 2020, 35(2): 243-250. WANG L, WANG B L, BAI G, et al. Experimental study on the mechanical anisotropy of 3D printed concrete[J]. Journal of Experimental Mechanics, 2020, 35(2): 243-250 (in Chinese). [22] 邓 雷, 温 勇, 韩国旗, 等. 锂渣混凝土孔分形维数与气体渗透性能关系研究[J]. 混凝土, 2017(5): 68-71. DENG L, WEN Y, HAN G Q, et al. Relationship between pore fractal dimension and air permeability of lithium slag concrete[J]. Concrete, 2017(5): 68-71 (in Chinese). [23] 李永鑫, 陈益民, 贺行洋, 等. 粉煤灰-水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J]. 硅酸盐学报, 2003, 31(8): 774-779. LI Y X, CHEN Y M, HE X Y, et al. Pore volume fractal dimension of fly ash-cement paste and its relationship between the pore structure and strength[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 774-779 (in Chinese). |