BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (5): 1569-1587.
• Special Issue on 3D Printing Technology for Inorganic Non-Metallic Materials (II) • Previous Articles Next Articles
YANG Chenqian1, LIU Chao2, CHEN Peng1, LIU Kai1,2
Received:
2023-12-31
Revised:
2024-03-05
Online:
2024-05-15
Published:
2024-06-06
[1] LEE H W. Manufacture of optical glass[J]. Nature, 1942, 150: 214-215. [2] GERVAIS L, DE ROOIJ N, DELAMARCHE E. Microfluidic chips for point-of-care immunodiagnostics[J]. Advanced Materials, 2011, 23(24): H151-H176. [3] ELVIRA K S, SOLVAS X C I, WOOTTON R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5: 905-915. [4] MACFARLANE A, MARTIN G. A world of glass[J]. Science, 2004, 305(5689): 1407-1408. [5] LI B N, LI Z J, COOPERSTEIN I, et al. Additive manufacturing of transparent multi-component nanoporous glasses[J]. Advanced Science, 2023, 10(35): e2305775. [6] PILKINGTON L A B. Review lecture: the float glass process[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1969, 314(1516): 1-25. [7] 葛新庆, 刘 琎, 程肇琦, 等. 溢流法平板玻璃成形机理及控制研究[J]. 建筑玻璃与工业玻璃, 2022, 8: 7-9. GE X Q, LIU J, CHENG Z Q, et al. Research on forming mechanism and control of flat glass by overflow method[J]. Architectural and Industrial Glass, 2022, 8: 7-9 (in Chinese). [8] LIU C, QIAN B, NI R P, et al. 3D printing of multicolor luminescent glass[J]. RSC Advances, 2018, 8(55): 31564-31567. [9] LI Y, FENG Z Y, HUANG L J, et al. Additive manufacturing high performance graphene-based composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105483. [10] MAYNARD A D. Navigating the fourth industrial revolution[J]. Nature Nanotechnology, 2015, 10: 1005-1006. [11] LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties[J]. Advanced Materials Technologies, 2020, 5(6): 1900981. [12] KLEIN J, STERN M, FRANCHIN G, et al. Additive manufacturing of optically transparent glass[J]. 3D Printing and Additive Manufacturing, 2015, 2(3): 92-105. [13] LUO J J, GILBERT L J, QU C, et al. Additive manufacturing of transparent soda-lime glass using a filament-fed process[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061006. [14] PETERS D, DRALLMEIER J, BRISTOW D A, et al. Sensing and control in glass additive manufacturing[J]. Mechatronics, 2018, 56: 188-197. [15] NGUYEN D T, MEYERS C, YEE T D, et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26): 1701181. [16] KOTZ F, ARNOLD K, BAUER W, et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544: 337-339. [17] COOPERSTEIN I, SHUKRUN E, PRESS O, et al. Additive manufacturing of transparent silica glass from solutions[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18879-18885. [18] HONG Z H, YE P R, LOY D A, et al. High-precision printing of complex glass imaging optics with precondensed liquid silica resin[J]. Advanced Science, 2022, 9(18): 2105595. [19] DE MARZI A, GIOMETTI G, ERLER J, et al. Hybrid additive manufacturing for the fabrication of freeform transparent silica glass components[J]. Additive Manufacturing, 2022, 54: 102727. [20] TOOMBS J T, LUITZ M, COOK C C, et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312. [21] LI M Z, YUE L, RAJAN A C, et al. Low-temperature 3D printing of transparent silica glass microstructures[J]. Science Advances, 2023, 9(40): 2958. [22] SHIM W. Apparatus and method for creating three-dimensional object: WO2014051250A1[P]. 2014-04-13. [23] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204. [24] CHOI Y H, KIM C M, JEONG H S, et al. Influence of bed temperature on heat shrinkage shape error in FDM additive manufacturing of the ABS-engineering plastic[J]. World Journal of Engineering and Technology, 2016, 4(3): 186-192. [25] SOARES J B, FINAMOR J, SILVA F P, et al. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing[J]. Rapid Prototyping Journal, 2018, 24(8): 1305-1316. [26] FELISMINA R, SILVA M, MATEUS A, et al. Direct digital manufacturing: a challenge to the artistic glass production[J]. Springer International Publishing, 2017, 65: 221-231. [27] MADER M, HAMBITZER L, SCHLAUTMANN P, et al. Melt-extrusion-based additive manufacturing of transparent fused silica glass[J]. Advanced Science, 2021, 8(23): 2103180. [28] XIN C X, LI Z, HAO L, et al. A comprehensive review on additive manufacturing of glass: recent progress and future outlook[J]. Materials & Design, 2023, 227: 111736. [29] BAUDET E, LEDEMI Y, LAROCHELLE P, et al. 3D-printing of arsenic sulfide chalcogenide glasses[J]. Optical Materials Express, 2019, 9(5): 2307. [30] ZAKI R M, STRUTYNSKI C, KASER S, et al. Direct 3D-printing of phosphate glass by fused deposition modeling[J]. Materials & Design, 2020, 194: 108957. [31] TAO Y B, KONG F G, LI Z L, et al. A review on voids of 3D printed parts by fused filament fabrication[J]. Journal of Materials Research and Technology, 2021, 15: 4860-4879. [32] III J C, CALVERT P D. Freeforming objects with low-binder slurry: US6401795[P]. 2002-06-11. [33] CESARANO J I, BAER T A, CALVERT P. Recent developments in freeform fabrication of dense ceramics from slurry deposition[J]. Office of Scientific & Technical Information Technical Reports, 1997. [34] ROCHA V G, SAIZ E, TIRICHENKO I S, et al. Direct ink writing advances in multi-material structures for a sustainable future[J]. Journal of Materials Chemistry A, 2020, 8(31): 15646-15657. [35] DESTINO J F, DUDUKOVIC N A, JOHNSON M A, et al. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks[J]. Advanced Materials Technologies, 2018, 3(6): 1700323. [36] SASAN K, LANGE A, YEE T D, et al. Additive manufacturing of optical quality germania-silica glasses[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6736-6741. [37] DYLLA-SPEARS R, YEE T D, SASAN K, et al. 3D printed gradient index glass optics[J]. Science Advances, 2020, 6(47): 7429. [38] SONG K K, YANG S D, WEI Y F, et al. Coaxially printed biomimetic BSPC with high strength and toughness[J]. Materials & Design, 2024, 238: 112648. [39] AN T, HWANG K T, KIM J H, et al. Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension[J]. Ceramics International, 2020, 46(5): 6469-6476. [40] LUO J J, GILBERT L J, BRISTOW D A, et al. Additive manufacturing of glass for optical applications[C]//SPIE LASE. Proc SPIE 9738, Laser 3D Manufacturing III, San Francisco, California, USA. 2016, 9738: 123-131. [41] PROTASOV C E, KHMYROV R S, GRIGORIEV S N, et al. Selective laser melting of fused silica: interdependent heat transfer and powder consolidation[J]. International Journal of Heat and Mass Transfer, 2017, 104: 665-674. [42] KHMYROV R S, PROTASOV C E, GRIGORIEV S N, et al. Crack-free selective laser melting of silica glass: single beads and monolayers on the substrate of the same material[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5): 1461-1469. [43] 陈定元, 刘 凯, 刘 超, 等. 3D打印制备碲酸盐玻璃及其成型工艺的研究[J]. 硅酸盐通报, 2019, 38(9): 2890-2894. CHEN D Y, LIU K, LIU C, et al. Preparation of tellurite glass by 3D printing and its forming process[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2890-2894 (in Chinese). [44] LIU K, XU J, GU X J, et al. Effects of raw material ratio and post-treatment on properties of soda lime glass-ceramics fabricated by selective laser sintering[J]. Ceramics International, 2020, 46(13): 20633-20639. [45] TAN C L, ZHOU K S, MA W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J]. Materials & Design, 2017, 134: 23-34. [46] FRAZIER W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. [47] GIBSON I, ROSEN D, STUCKER B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing[M]. New York: Springer New York, 2015. [48] RODRIGUES T A, DUARTE V, MIRANDA R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121. [49] WYSOCKI B, MAJ P, SITEK R, et al. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants[J]. Applied Sciences, 2017, 7(7): 657. [50] LUO J J, HOSTETLER J M, GILBERT L, et al. Additive manufacturing of transparent fused quartz[J]. Optical Engineering, 2018, 57(4): 041408. [51] SVETLIZKY D, DAS M, ZHENG B L, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications[J]. Materials Today, 2021, 49: 271-295. [52] HULL C W. Apparatus for production of three-dimensional objects by stereolithography: US4575330A[P]. 1984-08-08. [53] OUYANG M, ZHANG H, LI M J, et al. 3D printing of luminescent glass with controlled distribution of emission colors for multi-dimensional optical anti-counterfeiting[J]. Laser & Photonics Reviews, 2023, 17(8): 2300068. [54] AMBROSI A, PUMERA M. 3D-printing technologies for electrochemical applications[J]. Chemical Society Reviews, 2016, 45(10): 2740-2755. [55] NAKAMOTO T, YAMAGUCHI K, ABRAHA A P. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]//MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science. Nagoya, Japan. IEEE, 2002: 53-58. [56] BERTSCH A, ZISSI S, JÉZÉQUEL J Y, et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 1997, 3(2): 42-47. [57] CAI P, GUO L, WANG H, et al. Effects of slurry mixing methods and solid loading on 3D printed silica glass parts based on DLP stereolithography[J]. Ceramics International, 2020, 46(10): 16833-16841. [58] MOORE D G, BARBERA L, MASANIA K, et al. Three-dimensional printing of multicomponent glasses using phase-separating resins[J]. Nature Materials, 2020, 19: 212-217. [59] MAO Q J, WANG Y F, LI Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting[J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, 109: 110625. [60] PARTHENOPOULOS D A, RENTZEPIS P M. Two-photon volume information storage in doped polymer systems[J]. Journal of Applied Physics, 1990, 68(11): 5814-5818. [61] MARUO S, NAKAMURA O, KAWATA S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt Lett, 1997, 22: 132-134. [62] KOTZ F, QUICK A S, RISCH P, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 2021, 33(9): e2006341. [63] WEN X W, ZHANG B Y, WANG W P, et al. 3D-printed silica with nanoscale resolution[J]. Nature Materials, 2021, 20: 1506-1511. [64] HONG Z H, YE P R, LOY D A, et al. Three-dimensional printing of glass micro-optics[J]. Optica, 2021, 8(6): 904. [65] BAUER J, CROOK C, BALDACCHINI T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass[J]. Science, 2023, 380(6648): 960-966. [66] DOUALLE T, ANDRÉ J C, GALLAIS L. 3D printing of silica glass through a multiphoton polymerization process[J]. Optics Letters, 2021, 46(2): 364-367. [67] HUANG P H, LAAKSO M, EDINGER P, et al. Three-dimensional printing of silica glass with sub-micrometer resolution[J]. Nature Communications, 2023, 14: 3305. [68] MARSCHNER D E, PAGLIANO S, HUANG P H, et al. A methodology for two-photon polymerization micro 3D printing of objects with long overhanging structures[J]. Additive Manufacturing, 2023, 66: 103474. [69] YEUNG K W, DONG Y Q, CHEN L, et al. Printability of photo-sensitive nanocomposites using two-photon polymerization[J]. Nanotechnology Reviews, 2020, 9(1): 418-426. [70] WEISGRAB G, OVSIANIKOV A, COSTA P F. Functional 3D printing for microfluidic chips[J]. Advanced Materials Technologies, 2019, 4(10): 1900275. [71] GAL-OR E, GERSHONI Y, SCOTTI G, et al. Chemical analysis using 3D printed glass microfluidics[J]. Analytical Methods, 2019, 11(13): 1802-1810. |
[1] | WANG Xianggeng, CHEN Peiyuan, LI Jin, ZHAO Cheng, GU Zhicheng. Effect of Silica Fume Heat-Welded Modified Plastic Particles on Compressive Strength and Microstructure of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1975-1982. |
[2] | CHEN Hao, WANG Huaizhi, WANG Peng, XIAO Min, WU Juan, TANG Yanfeng, LI Fangxian, WEI Jiangxiong. Characteristics of Interfacial Transition Zone in Manufactured Sand Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1992-1998. |
[3] | WANG Xiaoyan, YE Wuping, CAO Liqiang. Influence and Mechanism Analysis of Re-Dispersible Latex Powder on Performance of Steel Structure Interface Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1999-2004. |
[4] | LIU Yuan, LIU Xiaotong, YANG Anxu, ZHANG Yuanyong, YANG Lin. Effect of Aluminum Sulfate Base Alkali-Free Liquid Accelerating Agent Modified by Fluorine Silicon Slag on Cement Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2005-2011. |
[5] | LI Jianfeng. Evolution Rule of Dynamic Mechanical Properties of Cement-Based Materials Containing SAP [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2022-2030. |
[6] | ZHENG Biao, LI Shunkai, LI Yulin, SU Youliang, LIN Yian. Effect of Magnetized Water on Mechanical Properties and Durability of Marine Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2039-2046. |
[7] | WANG Fajing, WANG Xinjie, ZHU Pinghua, LIU Xiaolin. Influences of Coarse Aggregate Replacement Ratios on High-Temperature Performance of Recycled Concrete with Manufactured Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2084-2092. |
[8] | LIANG Qiuqun, CHEN Xuandong, HU Xiang. Mesoscopic Simulation of Chloride Ion Transport Mechanism in Concrete under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2102-2110. |
[9] | XU Chengxiang, ZHANG Jiaqi. Permeability Resistance Test of Steel-PVA Hybrid Fiber High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2130-2136. |
[10] | NIU Jiadong, DU Yunxing, ZHANG Zicheng, LI Yanqiu, QIN Baokun. Performance of Slag-Based Geopolymer Flow Shield-Cured Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2176-2185. |
[11] | ZHOU Mingkai, WANG Xiao, GAO Peng, WANG Yuqiang. Preparation of High Strength Gypsum Product with Wet-Base α-Hemihydrous Gypsum [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2186-2197. |
[12] | CHENG Huan, LI Huajian, HUANG Fali, WANG Zhen, YI Zhonglai. Adsorption Characteristics of Recycled Sand Derived from Waste Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2198-2205. |
[13] | DONG Xinbao, REN Yi, WANG Yang, LIU Futian. Research Progress of Pressureless Sintered Silicon Carbide Bulletproof Ceramic Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2225-2240. |
[14] | SHEN Tianzi, LI Wenfeng, GUO Huishi, CAO Jinjin, HOU Yonggai, DU Juan. Effects of Al2O3 Particle Sizes on Microstructure and Properties of CA6 Lightweight Ceramic Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2250-2255. |
[15] | LI Jiayin, WU Jintao, HUANG Lingyan, ZHANG Jinjin, ZHONG Xinzi, CHENG Kemu, LIANG Duo, WU Yang, WANG Qinggang, LIU Yijun, XIAO Libiao, CAO Liyun, CHENG Zhiwen, HUANG Jianfeng. Oriented Growth Control and Photocatalytic Activity of FeWO4 Crystalline Glazes [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2262-2268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||