BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (5): 1557-1568.
• Special Issue on 3D Printing Technology for Inorganic Non-Metallic Materials (II) • Previous Articles Next Articles
MAO Yufei1, GUO Zenghui1, CHEN Hui1, ZHANG Jie2, LUO Jianlin1,2, LIU Chao2,3, SHANG Huaishuai2
Received:
2023-12-07
Revised:
2024-02-12
Online:
2024-05-15
Published:
2024-06-06
CLC Number:
MAO Yufei, GUO Zenghui, CHEN Hui, ZHANG Jie, LUO Jianlin, LIU Chao, SHANG Huaishuai. Study Progress on Reinforcement Technology for 3D Printing Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1557-1568.
[1] 张 涛. 配筋增强3D打印混凝土力学性能及若干优化分析[D]. 杭州: 浙江大学, 2022: 4-23. ZHANG T. Mechanical properties and optimization analysis of reinforced 3D printed concrete[D].Hangzhou: Zhejiang University, 2022: 4-23 (in Chinese). [2] NODEHI M, AGUAYO F, NODEHI S E, et al. Durability properties of 3D printed concrete (3DPC)[J]. Automation in Construction, 2022, 142: 104479. [3] 张 皓, 杜文风, 张 帆. 面向3D打印的纤维混凝土材料的发展现状[J]. 河南大学学报(自然科学版), 2020, 1(50): 108-117. ZHANG H, DU W F, ZHANG F. Development state of fiber reinforced concrete materials for 3D printing[J]. Journal of Henan University (Natural Science), 2020, 1(50): 108-117 (in Chinese). [4] 王海燕. 3D打印技术在工程建筑领域的应用及展望[J]. 江西建材, 2022(8): 5-8. WANG H Y. Application and perspective of 3D concrete printing technologies in architecture[J]. Jiangxi Building Materials, 2022(8): 5-8 (in Chinese). [5] 雷 斌, 马 勇, 熊悦辰, 等. 3D打印混凝土材料制备方法研究[J]. 混凝土, 2018(2): 145-149+153. LEI B, MA Y, XIONG Y C, et al. Study on preparation method of 3D printing concrete material[J]. Concrete, 2018(2): 145-149+153 (in Chinese). [6] 齐 甦, 李庆远, 崔小鹏, 等. 3D打印混凝土材料的研究现状与展望[J]. 混凝土, 2021(1): 36-39. QI S, LI Q Y, CUI X P, et al. Research status and prospect of 3D printed concrete materials[J]. Concrete, 2021(1): 36-39 (in Chinese). [7] 杜宇雷, 孙菲菲, 原 光, 等. 3D打印材料的发展现状[J]. 徐州工程学院学报(自然科学版), 2014, 29(1): 20-24. DU Y L, SUN F F, YUAN G, et al. Current status of materials for three-dimensional printing[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2014, 29(1): 20-24 (in Chinese). [8] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete-technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36. [9] 李森萍, 冯建行. 建筑复杂构件3D打印的传统工艺技术优化设计[J]. 粘接, 2022, 49(9): 111-114. LI S P, FENG J X. Optimization design of traditional technology for 3D printing of complex building components[J]. Adhesion, 2022, 49(9): 111-114 (in Chinese). [10] 刘天浩, 王 里, 李之建, 等. 混凝土3D打印加筋增韧方法研究进展[J]. 工业建筑, 2021, 51(6): 9-15. LIU T H, WANG L, LI Z J, et al. A review of incorporating reinforcement method in 3D concrete printing[J]. Industrial Construction, 2021, 51(6): 9-15 (in Chinese). [11] 万珂玥. 3D打印再生混凝土物理力学性质及其与钢筋的黏结性能研究[D]. 广东: 华南理工大学, 2021: 76-77. WAN K Y. Mechanical properties and bond performance with steel bars of 3D printing recycled concrete[D]. Guangdong: South China University of Technology, 2021: 76-77 (in Chinese). [12] GEBHARD L, ESPOSITO L, MENNA C, et al. Inter-laboratory study on the influence of 3D concrete printing set-ups on the bond behaviour of various reinforcements[J]. Cement and Concrete Composites, 2022, 133: 104660. [13] ASPRONE D, MENNA C, BOS F P, et al. Rethinking reinforcement for digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112: 111-121. [14] HACK N, LAUER W V. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork[J]. Architectural Design, 2014, 84(3): 44-53. [15] DING T, QIN F, XIAO J Z, et al. Experimental study on the bond behaviour between steel bars and 3D printed concrete[J]. Journal of Building Engineering, 2022, 49: 104105. [16] 彭子轩, 华 好. 钢筋混凝土梁的拓扑优化设计与3D打印模具[C]// 数智赋能:2022全国建筑院系建筑数字技术教学与研究学术研讨会论文集. 2022: 293-297. PENG Z X, HUA H. Topology optimization design and 3D printing mold of reinforced concrete beams[C]//Proceedings of the 2022 National Symposium on Teaching and Research of Digital Technology in Architecture of Architecture. 2022: 293-297 (in Chinese). [17] MAURYA S, DEY D, PANDA B, et al. Inline reinforcement of steel cable in 3D concrete printing[J]. Materials Today: Proceedings, 2023, 133: 1-6. [18] XIAO J Z, CHEN Z X, DING T, et al. Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces[J]. Cement and Concrete Composites, 2022, 125: 104313. [19] LIU M, WANG L, MA G W, et al. U-type steel wire mesh for the flexural performance enhancement of 3D printed concrete: a novel reinforcing approach[J]. Materials Letters, 2023, 331: 133429. [20] 崔永辉, 虞立果, 贾明印. 连续纤维增强PLA复合材料3D打印制备技术研究[J]. 纤维复合材料, 2020, 37(3): 95-99. CUI Y H, YU L G, JIA M Y. Study on 3D printing technology of continuous fiber reinforced PLA composite[J]. Fiber Composites, 2020, 37(3): 95-99 (in Chinese). [21] NEMATOLLAHI B, VIJAY P, SANJAYAN J, et al. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction[J]. Materials, 2018, 11(12): 2352. [22] BOS F P, AHMED Z Y, JUTINOV E R, et al. Experimental exploration of metal cable as reinforcement in 3D printed concrete[J]. Materials, 2017, 10(11): 1314. [23] ZHOU Y Y, JIANG D, SHARMA R, et al. Enhancement of 3D printed cementitious composite by short fibers: a review[J]. Construction and Building Materials, 2023, 362: 129763. [24] 侯泽宇. 3D打印纤维增强混凝土的制备与性能研究[D]. 南京: 东南大学, 2020: 70-89. HOU Z Y. Research on preparation and performance of 3D printing fiber reinforced concrete[D].Nanjing: Southeast University, 2020: 70-89 (in Chinese). [25] SINGH S B, MUNJAL P, THAMMISHETTI N. Role of water/cement ratio on strength development of cement mortar[J]. Journal of Building Engineering, 2015, 4: 94-100. [26] 汪 群, 高 超. PVA纤维在3D打印混凝土中的应用研究[J]. 低温建筑技术, 2019, 41(4): 3-6. WANG Q, GAO C. Study on the application of pva fiber in 3D printing concrete[J]. Low Temperature Architecture Technology, 2019, 41(4): 3-6 (in Chinese). [27] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62-70. [28] 程新睿, 胡元元, 王 里, 等. PP纤维对混凝土3D可打印性和力学性能的影响[J]. 混凝土与水泥制品, 2021(9): 50-55. CHENG X R, HU Y Y, WANG L, et al. Effects of PP fiber on 3D printability and mechanical properties of concrete[J]. China Concrete and Cement Products, 2021(9): 50-55 (in Chinese). [29] 赖洋羿, 张琦彬, 唐军务. 聚丙烯纤维对水泥砂浆流动度影响试验研究[J]. 四川水泥, 2017(3): 12-13. LAI Y Y, ZHANG Q B, TANG J W. Experimental study on influence of polypropylene fiber on fluidity of cement mortar[J]. Sichuan Cement, 2017(3): 12-13 (in Chinese). [30] 刘晓瑜, 杨立荣, 宋 扬. 3D打印建筑用水泥基材料的研究进展[J]. 华北理工大学学报(自然科学版), 2018, 40(3): 46-50. LIU X Y, YANG L R, SONG Y. Research progress of 3D printing building cement-based materials[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2018, 40(3): 46-50 (in Chinese). [31] 肖博丰, 李 古, 张广虎. 耐碱玻璃纤维掺量对3D打印砂浆性能的影响研究[J]. 硅酸盐通报, 2021, 40(6): 1889-1894+1910. XIAO B F, LI G, ZHANG G H. Effect of alkali-resistant glass fiber content on performance of 3D printed mortar[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1889-1894+1910 (in Chinese). [32] 常西栋, 李维红, 王 乾. 3D打印混凝土材料及性能测试研究进展[J]. 硅酸盐通报, 2019, 38(8): 2435-2441. CHANG X D, LI W H, WANG Q. Research progress of 3D printed concrete materials and its performance test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2435-2441 (in Chinese). [33] 徐 文. 3D打印碳纤维增强绿色混凝土制备与性能研究[D]. 北京: 北京科技大学, 2023: 33-41. XU W. Research on fabrication and property of 3D printed carbon fiber reinforced green concrete[D].Beijing: University of Science and Technology Beijing, 2023: 33-41 (in Chinese). [34] 尤泽坤. 纤维增强水泥基复合材料的3D打印性能研究[D]. 太原: 太原理工大学, 2022: 29-40. YOU Z K. Study on 3D printing properties of fiber reinforced cement-based composites[D].Taiyuan: Taiyuan University of Technology, 2022: 29-40 (in Chinese). [35] 张 超, 邓智聪, 汪智斌, 等. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878+1888. ZHANG C, DENG Z C, WANG Z B, et al. Effects of fibers on printing performance and mechanical properties of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1870-1878+1888 (in Chinese). [36] SEO E A, KIM W W, KIM S W, et al. Mechanical properties of 3D printed concrete with coarse aggregates and polypropylene fiber in the air and underwater environment[J]. Construction and Building Materials, 2023, 378: 131184. [37] 陈旭浩, 李 楠, 钟建军, 等. 纤维掺量对速凝3D打印水泥基材料力学各向异性的影响[J]. 混凝土, 2023(4): 105-109. CHEN X H, LI N, ZHONG J J, et al. Effect of fiber content on mechanical anisotropy of rapid setting 3D printing cement-based materials[J]. Concrete, 2023(4): 105-109 (in Chinese). [38] 李维红, 王 乾, 陈旭浩, 等. 纤维对3D打印水泥基材料力学性能的影响[J]. 实验力学, 2021, 36(4): 499-506. LI W H, WANG Q, CHEN X H, et al. Effect of fiber on mechanical properties of 3D printing cement-based materials[J]. Journal of Experimental Mechanics, 2021, 36(4): 499-506 (in Chinese). [39] 郑天宇. 连续纤维复合材料3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 27-41. ZHENG T Y. Research on key technologies of 3D printing of continuous fiber-reinforced composites[D].Harbin: Harbin Institute of Technology, 2020: 27-41 (in Chinese). [40] 朱伶俐, 杨 章, 赵 宇, 等. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 111-116. ZHU L L, YANG Z, ZHAO Y, et al. 3D printing performance of composite cement-based materials with blast furnace slag and steel slag[J]. Materials Reports, 2023, 37(12): 111-116 (in Chinese). [41] ZHANG D B, FENG P, ZHOU P Z, et al. 3D printed concrete walls reinforced with flexible FRP textile: automatic construction, digital rebuilding, and seismic performance[J]. Engineering Structures, 2023, 291: 116488. [42] TU H D, WEI Z Y, BAHRAMI A, et al. Recent advancements and future trends in 3D concrete printing using waste materials[J]. Developments in the Built Environment, 2023, 16: 100187. [43] 李 艳, 程格格, 刘泽军. 聚乙烯醇纤维增强水泥基复合材料单轴受压强度与变形特性分析[J]. 工业建筑, 2017, 47(4): 122-126+158. LI Y, CHENG G G, LIU Z J. Analysis of strength and deformation properties on PVA-ECC under uniaxial compression[J]. Industrial Construction, 2017, 47(4): 122-126+158 (in Chinese). [44] 王栋民, 李小龙, 刘 泽. 粉煤灰/磷渣微粉改性水泥基3D打印材料的制备与工作性研究[J]. 硅酸盐通报, 2020, 39(8): 2372-2378+2392. WANG D M, LI X L, LIU Z. Preparation and working performance of fly ash/phosphorus slag powder modified cement-based 3D printing materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2372-2378+2392 (in Chinese). [45] 魏 玮, 杨 涛. 高流动性3D打印水泥基材料制备及性能研究[J]. 混凝土与水泥制品, 2021(2): 8-12. WEI W, YANG T. Study on preparation and properties of high fluidity 3D printed cement-based materials[J]. China Concrete and Cement Products, 2021(2): 8-12 (in Chinese). [46] 赵 颖, 刘维胜, 王 欢, 等. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(增刊2): 1217-1220. ZHAO Y, LIU W S, WANG H, et al. Effect of limestone powder on properties of cement-based materials for 3D printing[J]. Materials Reports, 2020, 34(supplement 2): 1217-1220 (in Chinese). [47] ZHANG Y, ZHANG Y, LIU G, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [48] 李维红, 常西栋, 王 乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3101-3107+3114. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107+3114 (in Chinese). [49] 杨钱荣, 赵宗志, 肖建庄, 等. 矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2): 412-418. YANG Q R, ZHAO Z Z, XIAO J Z, et al. Effect of mineral admixtures and chemical admixtures on performance of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(2): 412-418 (in Chinese). [50] RAJEEV P, RAMESH A, NAVARATNAM S, et al. Using fibre recovered from face mask waste to improve printability in 3D concrete printing[J]. Cement and Concrete Composites, 2023, 139: 105047. [51] 肖绪文, 田 伟, 苗冬梅. 3D打印技术在建筑领域的应用[J]. 施工技术, 2015, 44(10): 79-83. XIAO X W, TIAN W, MIAO D M. Application of 3D printing technology in building field[J]. Construction Technology, 2015, 44(10): 79-83 (in Chinese). [52] 夏锴伦, 陈宇宁, 刘 超, 等. 混凝土3D打印建造的低碳性研究进展[J]. 建筑结构学报, 2023: 1-21. XIA K L, CHEN Y N, LIU C, et al. Research progress on low carbon characters of concrete 3D-printing based construction[J]. Journal of Building Structures, 2023: 1-21 (in Chinese). |
[1] | WANG Xiaoyan, YE Wuping, CAO Liqiang. Influence and Mechanism Analysis of Re-Dispersible Latex Powder on Performance of Steel Structure Interface Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1999-2004. |
[2] | WANG Bo, QIAN Jun, LUO Jie, XU Yi, CHU Hongqiang, JIANG Linhua. Superhydrophobic Biomimetic Construction and Microscopic Mechanism of Hydraulic Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2031-2038. |
[3] | ZHENG Biao, LI Shunkai, LI Yulin, SU Youliang, LIN Yian. Effect of Magnetized Water on Mechanical Properties and Durability of Marine Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2039-2046. |
[4] | GAN Xueyu, CHEN Shuai, GENG Haining, LI Zonggang, MA Haosen, CHEN Wei, HOU Suo, LI Qiu. Effect of Modified High Concentration Boric Acid Solution on Mechanical and Neutron Shielding Properties of Serpentine Shielded Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2047-2055. |
[5] | XIAN Xuelei, LIN Mengkai, CHEN Tianming, WANG Daning. Straight Shear Test and Finite Element Simulation of UHPC-NC Interface with Reinforcement Planting [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2056-2063. |
[6] | LI Luoyin, DONG Shuibo, LIU Haifeng, YONG Wenjie, CHE Jialing. Strength Prediction and Ultrasonic Testing of Desert Sand Concrete after High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2073-2083. |
[7] | WANG Fajing, WANG Xinjie, ZHU Pinghua, LIU Xiaolin. Influences of Coarse Aggregate Replacement Ratios on High-Temperature Performance of Recycled Concrete with Manufactured Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2084-2092. |
[8] | MA Xinmei, WEN Yong, TIAN Peifeng, LIN Haimeng, SHAO Shuai. Corrosion Effects of Vitamins on Steel Bar in Simulated Pore Solution of Concrete Containing Chlorine [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2093-2101. |
[9] | LIANG Qiuqun, CHEN Xuandong, HU Xiang. Mesoscopic Simulation of Chloride Ion Transport Mechanism in Concrete under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2102-2110. |
[10] | XU Cundong, WANG Zhihang, CHEN Jiahao, LI Zhun, WANG Hairuo, XU Hui. Life Prediction of Polypropylene Fiber Reinforced Concrete under Salt-Freeze Erosion Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2111-2120. |
[11] | WANG Wei, LAI Zengcheng, TAN Peng, JU Zhicheng, YANG Haicheng, FAN Zhihong. Preparation and Properties of Chloride Resistant Concrete with Manufactured Sand and Extra Fine Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2121-2129. |
[12] | XU Chengxiang, ZHANG Jiaqi. Permeability Resistance Test of Steel-PVA Hybrid Fiber High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2130-2136. |
[13] | QIAO Xiantao, YU Peng, CHEN Xijian, ZHOU Jiale, ZHANG Lianjie, LI Jianpeng. Cracking Behavior and Fracture Toughness of Concrete Strengthened by Single/Mixed Amorphous Alloy Fiber and Steel Fiber [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2137-2148. |
[14] | ZHENG Jianlan, WANG Yasi, YE Yan. Influence of Undisturbed Sea Sand on Mechanical Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2149-2156. |
[15] | PENG Lijuan, KE Guojun, SONG Baixing, JIANG Tian, WANG Wenqing. Fluidity and Mechanical Properties of Waste Glass Powder-Metakaolin Geopolymer Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2168-2175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||