[1] MATTER J M, STUTE M, SNÆBJÖRNSDOTTIR S Ó, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science, 2016, 352(6291): 1312-1314. [2] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [3] 赵珂萍, 李晓玉, 李瑞红, 等. 固废源CaO基CO2捕集材料的制备与捕集性能研究进展[J]. 硅酸盐通报, 2023, 42(2): 520-530. ZHAO K P, LI X Y, LI R H, et al. Research progress on preparation and capture performance of CaO-based CO2 capture materials from solid wastes[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 520-530 (in Chinese). [4] MORANDEAU A, THIÉRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cement and Concrete Research, 2014, 56: 153-170. [5] 马卓慧, 廖洪强, 程芳琴, 等. 粉煤灰提铝硅钙渣矿化固定CO2[J]. 硅酸盐通报, 2020, 39(4): 1224-1229+1236. MA Z H, LIAO H Q, CHENG F Q, et al. CO2 sequestration by mineralization of silica calcium slag generated in process of extracting alumina from fly ash[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1224-1229+1236 (in Chinese). [6] WEE J H. A review on carbon dioxide capture and storage technology using coal fly ash[J]. Applied Energy, 2013, 106: 143-151. [7] 任国宏, 廖洪强, 程芳琴, 等. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(增刊2): 300-303+308. REN G H, LIAO H Q, CHENG F Q, et al. Study on carbonation enhanced carbon fixation characteristics of foamed concrete alkali immersed test block[J]. Materials Reports, 2019, 33(supplement 2): 300-303+308 (in Chinese). [8] 石信超, 房晶瑞, 郅 晓, 等. 孔结构和含水量对水泥净浆矿化养护性能的影响[J]. 硅酸盐通报, 2023, 42(8): 2692-2702. SHI X C, FANG J R, ZHI X, et al. Effects of pore structure and water content on carbonation curing performance of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2692-2702 (in Chinese). [9] PAN S Y, CHEN Y H, FAN L S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. Nature Sustainability, 2020, 3(5): 399-405. [10] XI F M, DAVIS S J, CIAIS P, et al. Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9(12): 880-883. [11] 孙一夫, 李凤军, 何 文, 等. 二氧化碳矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021, 27(2): 237-245. SUN Y F, LI F J, HE W, et al. Investigation on CO2 mineralization curing of aerated concretes[J]. Clean Coal Technology, 2021, 27(2): 237-245 (in Chinese). [12] WANG D C, NOGUCHI T, NOZAKI T. Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials[J]. Journal of Cleaner Production, 2019, 238: 117980. [13] VARGAS F, LOPEZ M, RIGAMONTI L. Environmental impacts evaluation of treated copper tailings as supplementary cementitious materials[J]. Resources, Conservation and Recycling, 2020, 160: 104890. [14] 王佃超, 肖建庄, 夏 冰, 等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报(自然科学版), 2022, 50(11): 1610-1619. WANG D C, XIAO J Z, XIA B, et al. Carbonation modification of recycled aggregate and carbon dioxide sequestration analysis[J]. Journal of Tongji University (Natural Science), 2022, 50(11): 1610-1619 (in Chinese). [15] LI Z, HE Z, SHAO Y X. Early age carbonation heat and products of tricalcium silicate paste subject to carbon dioxide curing[J]. Materials, 2018, 11(5): 730. [16] STEINOUR H H. Some effects of carbon dioxide on mortars and concrete-discussion[J]. ACI Journal, 1959, 30(2): 905-907. [17] 章玉容, 徐雅琴, 姚泽阳, 等. 配合比设计方法对再生混凝土生命周期评价的影响[J]. 浙江工业大学学报, 2020, 48(6): 648-653. ZHANG Y R, XU Y Q, YAO Z Y, et al. Effect of mix design methods on life cycle assessment of recycled aggregate concrete[J]. Journal of Zhejiang University of Technology, 2020, 48(6): 648-653 (in Chinese). [18] 梁永宸, 石宵爽, 张 聪, 等. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 82-87. LIANG Y C, SHI X S, ZHANG C, et al. Comprehensive evaluation of the performance and environmental impact of fly ash geopolymer concrete[J]. Materials Reports, 2023, 37(2): 82-87 (in Chinese). [19] 蒋旭光, 龙 凌, 赵晓利, 等. 固化材料在生活垃圾焚烧飞灰处置中的应用概况及前景[J]. 化工进展, 2019, 38(增刊1): 216-225. JIANG X G, LONG L, ZHAO X L, et al. Application and prospect of solidified materials in fly ash disposal of domestic waste incineration[J]. Chemical Industry and Engineering Progress, 2019, 38(supplement 1): 216-225 (in Chinese). [20] FRUEHAN R, FORTINI O, PAXTON H, et al. Theoretical minimum energies to produce steel for selected conditions[R]. Carnegie Mellon University, Pittsburgh, PA (US); Energetics, Inc., Columbia, MD (US), 2000. [21] 章玉容. 粉煤灰混凝土生命周期环境影响综合评价[D]. 北京: 北京交通大学, 2016. ZHANG Y R. Comprehensive evaluation of life cycle environmental impact of fly ash concrete[D]. Beijing: Beijing Jiaotong University, 2016 (in Chinese). [22] 汪振双, 宁 欣, 赵一健. 基于价值工程原理的混凝土物化阶段碳排放评价[J]. 硅酸盐通报, 2016, 35(12): 4308-4313. WANG Z S, NING X, ZHAO Y J. Carbon emissions evaluation on building embodied stage based on value engineering[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4308-4313 (in Chinese). [23] 丁 超, 贾子杰, 王振华, 等. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. DING C, JIA Z J, WANG Z H, et al. UHPC carbon emission control potential based on life cycle assessment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1242-1251 (in Chinese). |