[1] 金会心, 王尚杰夫, 肖媛丹, 等. 赤泥与粉煤灰资源特性及其协同利用现状研究[J]. 贵州大学学报(自然科学版), 2022, 39(2): 18-26. JIN H X, WANG S J F, XIAO Y D, et al. Study on the characteristics and collaborative utilization of red mud and fly ash resources[J]. Journal of Guizhou University (Natural Sciences), 2022, 39(2): 18-26 (in Chinese). [2] 郑文忠, 邹梦娜, 王 英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39. ZHENG W Z, ZOU M N, WANG Y. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures, 2019, 40(1): 28-39 (in Chinese). [3] 史 迪, 叶家元, 张 鹏, 等. 赤泥制备碱激发胶凝材料的性能[J]. 中国建材科技, 2016, 25(6): 24-26. SHI D, YE J Y, ZHANG P, et al. Properties of alkali-activated cementitious materials synthesized with red mud[J]. China Building Materials Science & Technology, 2016, 25(6): 24-26 (in Chinese). [4] 袁森森. 赤泥基胶凝材料设计制备及重金属离子固化研究[D]. 武汉: 武汉理工大学, 2019. YUAN S S. Design and preparation of red mud-based cementitious materials and study on heavy metal ion curing[D].Wuhan: Wuhan University of Technology, 2019 (in Chinese). [5] 侯双明. 拜耳法赤泥基地聚合胶凝材料制备非烧结尾矿砖研究[D]. 青岛: 青岛理工大学, 2019. HOU S M. Study on preparation of non-sintered tailings brick by polymerization of cementitious materials in bayer red mud base[D].Qingdao: Qingdao Tehcnology University, 2019 (in Chinese). [6] 王 晶. 赤泥基胶凝材料的制备及性能研究[D]. 西安: 西安建筑科技大学, 2014. WANG J. Preparation and properties of red mud-based cementitious materials[D].Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese). [7] 宋子明. 拜耳法赤泥高效活化技术与水化机理研究[D]. 郑州: 华北水利水电大学, 2022. SONG Z M. Study on efficient activation technology and hydration mechanism of bayer red mud[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022 (in Chinese). [8] 李先海. 赤泥对混凝土骨料/胶凝材料界面影响行为研究[D]. 贵阳: 贵州大学, 2021. LI X H. Study on the influence of red mud on the interface between concrete aggregate and cementitious materials[D].Guiyang: Guizhou University, 2021 (in Chinese). [9] 孙科科, 彭小芹, 冉 鹏, 等. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100+24106. SUN K K, PENG X Q, RAN P, et al. The influence factor of the anti-freeze of geopolymer concrete[J]. Materials Reports, 2021, 35(24): 24095-24100+24106 (in Chinese). [10] 商怀帅, 欧进萍, 宋玉普. 混凝土结构冻融损伤理论及冻融可靠度分析[J]. 工程力学, 2011, 28(1): 70-74. SHANG H S, OU J P, SONG Y P. Analysis on reliability and freeze-thaw damage theory of concrete[J]. Engineering Mechanics, 2011, 28(1): 70-74 (in Chinese). [11] 连 坤, 韩 涛, 靳秀芝. 超细粉煤灰对CFB炉渣免烧砖抗冻性的影响研究[J]. 硅酸盐通报, 2018, 37(5): 1788-1794+1812. LIAN K, HAN T, JIN X Z. Research on effects of ultra-fine ash on freeze resistance of the CFB slag baking-free bricks[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(5): 1788-1794+1812 (in Chinese). [12] LI Y L, GUO H Y, ZHOU H, et al. Damage characteristics and constitutive model of concrete under uniaxial compression after freeze-thaw damage[J]. Construction and Building Materials, 2022, 345: 128171. [13] 赵卓钰. 冻融循环作用下碾压混凝土动态力学性能试验研究[D]. 西安: 西京学院, 2021. ZHAO Z Y. Experimental study on dynamic mechanical properties of RCC under freeze-thaw cycle[D]. Xi'an: Xijing University, 2021 (in Chinese). [14] 冯学志, 秦 楠, 崔立桩, 等. 水化学-冻融循环作用下砂岩三轴蠕变及细观损伤试验研究[J]. 应用力学学报, 2021, 38(4): 1383-1391. FENG X Z, QIN N, CUI L Z, et al. Experimental study on triaxial creep behavior of yellow sandstone under the coupling of chemical solution and freeze-thaw cycle[J]. Chinese Journal of Applied Mechanics, 2021, 38(4): 1383-1391 (in Chinese). [15] 蒋 伟. 水工结构混凝土内部孔隙发育及水分迁移规律研究[D]. 西安: 西京学院, 2021. JIANG W. Study on pore development and water migration law in hydraulic structure concrete[D]. Xi'an: Xijing University, 2021 (in Chinese). [16] CHANG S, XU J Y, BAI E, et al. Static and dynamic mechanical properties and deterioration of bedding sandstone subjected to freeze-thaw cycles: considering bedding structure effect[J]. Scientific Reports, 2020. [17] 侯运炳, 丁鹏初, 韩 冬, 等. 冻融循环对全尾砂固结体强度与微观孔结构的影响[J]. 矿业研究与开发, 2019, 39(8): 68-73. HOU Y B, DING P C, HAN D, et al. Effect of freeze-thaw cycles on mechanical strength and microscopic pore structure of unclassified tailings cemented mass[J]. Mining Research and Development, 2019, 39(8): 68-73 (in Chinese). [18] 申艳军, 杨更社, 王 婷, 等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41(1): 117-128. SHEN Y J, YANG G S, WANG T, et al. Evaluation of frost heave force models of pore/fissure in rock and their applicability[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 117-128 (in Chinese). [19] LIN H W, HAN Y F, LIANG S M, et al. Effects of low temperatures and cryogenic freeze-thaw cycles on concrete mechanical properties: a literature review[J]. Construction and Building Materials, 2022, 345: 128287. |