BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (2): 637-648.
Special Issue: 陶瓷
• Ceramics • Previous Articles Next Articles
WANG Mengmeng, SUI Xueye, QI Kaiyu, XU Jie, LIU Ruixiang, ZHOU Changling, TANG Wenzhe, DUAN Xiaofeng, LI Zhanfeng
Received:
2023-08-17
Revised:
2023-09-21
Online:
2024-02-15
Published:
2024-02-05
CLC Number:
WANG Mengmeng, SUI Xueye, QI Kaiyu, XU Jie, LIU Ruixiang, ZHOU Changling, TANG Wenzhe, DUAN Xiaofeng, LI Zhanfeng. Research Progress of Porous Ceramic Insulation Material[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 637-648.
[1] WU J T, CHEN H Y, LUO X, et al. Design, fabrication, microstructure, and properties of highly porous alumina whisker foam ceramic[J]. Ceramics International, 2022, 48(2): 2776-2781. [2] CHEN Y, WANG N N, OLA O, et al. Porous ceramics: light in weight but heavy in energy and environment technologies[J]. Materials Science and Engineering Reports, 2021, 143: 100589. [3] 殷加强, 郝晶淼, 张晚春, 等. 微乳液模板法制备多孔陶瓷研究进展[J]. 中国陶瓷, 2020, 56(5): 1-9. YIN J Q, HAO J M, ZHANG W C, et al. Research progress on preparation of porous ceramics via micro-emulsion template[J]. China Ceramic, 2020, 56(5): 1-9 (in Chinese). [4] LIU Y, SHEN H L, ZHANG J J, et al. High strength porous ceramics and its potential in adsorption and building materials: a short process to co-disposal secondary aluminum dross and quicklime[J]. Construction and Building Materials, 2023, 395: 132292. [5] 袁 绮, 谭 划, 杨廷旺, 等. 多孔陶瓷的制备方法及研究现状[J]. 硅酸盐通报, 2021, 40(8): 2687-2701. YUAN Q, TAN H, YANG T W, Et al. Preparation methods and research status of porous ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2687-2701 (in Chinese). [6] LI K Z, LUO J, DONG L H, et al. TiN porous ceramics with excellent electrochemical properties prepared by freeze-drying and in-situ nitridation reaction[J]. Ceramics International, 2022, 48(13): 19017-19025. [7] NISHIHORA R K, RACHADEL P L, QUADRI M G N, et al. Manufacturing porous ceramic materials by tape casting: a review[J]. Journal of the European Ceramic Society, 2018, 38(4): 988-1001. [8] 孙志强. 多孔氧化物陶瓷的可控烧结制备及性能研究[D]. 北京: 中国科学院大学, 2018. SUN Z Q. Controllable sintering and performance study of porous oxide ceramics[D]. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese). [9] ZHANG B, YANG Y, FAN X L. Processing, microstructure, and properties of porous ceramic composites with directional channels[J]. Journal of Materials Science & Technology, 2024, 168: 1-15. [10] ZHU Y, GUO B, ZUO W R, et al. Effect of sintering temperature on structure and properties of porous ceramics from tungsten ore tailings[J]. Materials Chemistry and Physics, 2022, 287: 126315. [11] HAN L, LI X J, LI F L, et al. Superhydrophilic/air-superoleophobic diatomite porous ceramics for highly-efficient separation of oil-in-water emulsion[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108483. [12] XU S, CHEN L Z, GONG M Q, et al. Characterization and engineering application of a novel ceramic composite insulation material[J]. Composites Part B: Engineering, 2017, 111: 143-147. [13] 杜翠凤, 李利军, 王 远, 等. SiO2气凝胶纤维隔热复合材料的常压制备及性能表征[J]. 硅酸盐通报, 2022, 41(12): 4406-4411+4418. DU C F, LI L J, WANG Y, et al. Atmospheric pressure preparation and property characterization of SiO2 aerogel fiber thermal insulation composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4406-4411+4418 (in Chinese). [14] 杜浩然, 邢益强, 李 祥, 等. 纤维和遮光剂对纳米孔粉体隔热材料性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3257-3264. DU H R, XING Y Q, LI X, et al. Effects of fibers and opacifiers on properties of nanoporous powder insulation material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3257-3264 (in Chinese) [15] 郑 彧, 韦中华, 张 阳, 等. 多孔二氧化锆基隔热材料的制备及性能[J]. 硅酸盐通报, 2020, 39(11): 3643-3648. ZHENG Y, WEI Z H, ZHANG Y, et al. Preparation and properties of porous zirconia based thermal insulation materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3643-3648 (in Chinese). [16] LIU R P, XU T T, WANG C G. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method[J]. Ceramics International, 2016, 42(2): 2907-2925. [17] HWA L C, RAJOO S, NOOR A M, et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347. [18] HAI O, XIAO X N, XIE Q B, et al. Preparation of three-dimensionally linked pore-like porous atomized ceramics with high oil and water absorption rates[J]. Journal of the European Ceramic Society, 2023, 43(10): 4530-4540. [19] BOWEN J J, MOORAJ S, GOODMAN J A, et al. Hierarchically porous ceramics via direct writing of preceramic polymer-triblock copolymer inks[J]. Materials Today, 2022, 58: 71-79. [20] DING Y J, ZHANG X Y, WU B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts[J]. Resources, Conservation and Recycling, 2021, 166: 105373. [21] HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics: an application based review[J]. Ceramics International, 2014, 40(10): 15351-15370. [22] ZHANG F, LI Z A, XU M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society, 2022, 42(8): 3351-3373. [23] WANG S Y, YANG Z, LUO X D, et al. Preparation of calcium hexaluminate porous ceramics by gel-casting method with polymethyl methacrylate as pore-forming agent[J]. Ceramics International, 2022, 48(20): 30356-30366. [24] ZHANG H H, LIU H, ZHU M, et al. Selective microwave absorption of SiC-Si3N4 porous ceramics prepared by sacrificial template method[J]. Ceramics International, 2023, 49(16): 27604-27613. [25] ÇELIK A, ÇAǦLAR G, ÇELIK Y. Fabrication of porous Al2O3 ceramics using carbon black as a pore forming agent by spark plasma sintering[J]. Ceramics International, 2022, 48(19): 28181-28190. [26] HEICHEL D N. Method of making a ceramic article having open porous interior: H48[P]. 1986-04-01. [27] 杨 昊, 董 博, 余 超, 等. 有机泡沫浸渍法制备铸钢用泡沫陶瓷过滤器的研究进展[J]. 陶瓷学报, 2023, 44(4): 662-670. YANG H, DONG B, YU C, et al. Progress in the preparation of ceramic foam filters for cast steel with polymer sponge replica technique[J]. Journal of Ceramics, 2023, 44(4): 662-670 (in Chinese). [28] 杨春艳, 卢 淼, 刘培生. 多孔隔热陶瓷的研究进展[J]. 陶瓷学报, 2014, 35(2): 132-138. YANG C Y, LU M, LIU P S. The research progress of porous heat-resistant ceramic[J]. Journal of Ceramics, 2014, 35(2): 132-138 (in Chinese). [29] HAN L, CHEN Y, CHANG H, et al. One-pot foam-gelcasting/nitridation synthesis of high porosity nano-whiskers based 3D Si3N4 porous ceramics[J]. Journal of the European Ceramic Society, 2021, 41(12): 6070-6074. [30] CAO J J, LI W F, GUO H S, et al. Effects of nano-CaCO3 and nano-iron phosphate on microstructure and properties of SiO2 porous ceramics prepared by direct foaming[J]. Materials Today Communications, 2023, 35: 105690. [31] ZHANG X, HE J F, HAN L, et al. Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation[J]. Journal of the European Ceramic Society, 2023, 43(1): 37-46. [32] 刘文进, 周国相, 林坤鹏, 等. 基于浆料形态的陶瓷3D打印技术的浆料体系研究进展[J]. 硅酸盐通报, 2021, 40(6): 1918-1926. LIU W J, ZHOU G X, LIN K P, et al. Research progress on slurry system of ceramic 3D printing technology based on slurry morphology[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1918-1926 (in Chinese). [33] 郑江涛. 高性能陶瓷光固化3D打印技术研究[D]. 上海: 上海交通大学, 2021. ZHENG J T. Research on 3D printing technology of high performance ceramic curing[D]. Shanghai: Shanghai Jiao Tong University, 2021 (in Chinese). [34] 刘 雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12 LIU Y, CHEN Z W. Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48(9): 1-12 (in Chinese) [35] 王守兴, 李 伶, 毕鲁南, 等. 大壁厚3D打印SiO2陶瓷快速制备技术研究[J]. 硅酸盐通报, 2021, 40(6): 1943-1949. WANG S X, LI L, BI L N, et al. Rapid preparation of thick-walled 3D printing silica ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1943-1949 (in Chinese). [36] HOSSAIN S S, BAEK I W, SON H J, et al. 3D printing of porous low-temperature in situ mullite ceramic using waste rice husk ash-derived silica[J]. Journal of the European Ceramic Society, 2022, 42(5): 2408-2419. [37] CHEN H D, PAN Y Y, CHEN B, et al. Fabrication of porous aluminum ceramics beyond device resolution via stereolithography 3D printing[J]. Ceramics International, 2023, 49(11): 18463-18469. [38] ZAHRA M S, HASINA B, STEFAN S, et al. A review on silica aerogel-based materials for acoustic applications[J]. Journal of Non-Crystalline Solids, 2021, 562: 120770. [39] KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020, 276: 102101. [40] LIU Y C, ZHENG P P, WU H J, et al. Preparation and dynamic moisture adsorption of fiber felt/silica aerogel composites with ultra-low moisture adsorption rate[J]. Construction and Building Materials, 2023, 363: 129825. [41] METI P, MAHADIK D B, LEE K Y, et al. Overview of organic-inorganic hybrid silica aerogels: progress and perspectives[J]. Materials & Design, 2022, 222: 111091. [42] MIRMOEINI S S, HOSSEINI S H, LOTFI JAVID A, et al. Essential oil-loaded starch/cellulose aerogel: preparation, characterization and application in cheese packaging[J]. International Journal of Biological Macromolecules, 2023, 244: 125356. [43] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741. [44] NICOLAON G A. Préparation des aérogels de silice à partir d'orthosilicate de méthyle en milieu alcoolique et leurs propriétés[J]. Bulletin de la Société Chimique de France, 1968, 5: 1906-1911. [45] TEWARI P H, HUNT A J, LOFFTUS K D. Ambient-temperature supercritical drying of transparent silica aerogels[J]. Materials Letters, 1985, 3(9/10): 363-367. [46] LI C D, LIU Q S, ZHANG G H, et al. Rapid synthesis of MTES-derived silica aerogel monoliths in Cetyltrimethylammonium bromide/water solvent system by ambient pressure drying[J]. Powder Technology, 2023, 418: 118314. [47] DUAN Y D, WANG L J, LI S Y, et al. Modulating pore microstructure of silica aerogels dried at ambient pressure by adding N-hexane to the solvent[J]. Journal of Non-Crystalline Solids, 2023, 610: 122312. [48] ZHAO C, LI Y K, YE W G, et al. Performance regulation of silica aerogel powder synthesized by a two-step sol-gel process with a fast ambient pressure drying route[J]. Journal of Non-Crystalline Solids, 2021, 567: 120923. [49] 杨柱超. 以有机硅烷为前驱体的二氧化硅弹性气凝胶制备及性能研究[D]. 天津: 天津大学, 2020. YANG Z C. Preparation and properties of silica elastic aerogel with organosilane as precursor[D]. Tianjin: Tianjin University, 2020 (in Chinese). [50] DING J, ZHONG K, LIU S J, et al. Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique[J]. Powder Technology, 2020, 373: 716-726. [51] 张国强, 赵长兴, 辛 燕, 等. 基于调频连续波太赫兹技术的复合陶瓷隔热瓦无损检测[J]. 无损检测, 2020, 42(12): 29-34. ZHANG G Q, ZHAO C X, XIN Y, et al. Nondestructive inspection for ceramic matrix composite insulation tile based on FMCW terahertz technology[J]. Nondestructive Testing, 2020, 42(12): 29-34 (in Chinese). [52] LÓPEZ PAULA V, HERNÁNDEZ MARÍA F, DIEGO R, et al. Porous acicular mullite ceramics produced from well and poorly crystallized kaolinite[J]. Applied Clay Science, 2023, 238: 106937. [53] CHEN G B, YANG F Y, ZHAO S, et al. Preparation of high-strength porous mullite ceramics and the effect of hollow sphere particle size on microstructure and properties[J]. Ceramics International, 2022, 48(13): 19367-19374. [54] DONG X, ZHENG Y, XIE D W, et al. Multi-functional mullite fiber-based porous ceramics with a multilevel pore structure assembled by alumina platelets and mullite whiskers[J]. Ceramics International, 2023, 49(1): 847-854. [55] QIN Z, XU X J, XU T F, et al. High-strength thermal insulating porous mullite fiber-based ceramics[J]. Journal of the European Ceramic Society, 2022, 42(15): 7209-7218. [56] DU B, HONG C Q, ZHANG X H, et al. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ceramic insulation tile in plasma wind tunnel[J]. Ceramics International, 2018, 44(3): 3505-3510. [57] YANG Y L, FU W Y, CHEN X X, et al. Fabrication of homogeneous mullite-based fiber porous ceramics with high strength and porosity[J]. Journal of the European Ceramic Society, 2022, 42(15): 7219-7227. [58] HE D L, OU D B, GAO H, et al. Thermal insulation and anti-vibration properties of MoSi2-based coating on mullite fiber insulation tiles[J]. Ceramics International, 2022, 48(2): 1844-1850. [59] CAO Y Q, XU X J, QIN Z, et al. Vat photopolymerization 3D printing of thermal insulating mullite fiber-based porous ceramics[J]. Additive Manufacturing, 2022, 60: 103235. [60] TAO X, GUO L L, ZHANG J F, et al. Preparation of La-monazite fiber coating on quartz fiber fabric by a repeated dip-sintering method[J]. Materials Chemistry and Physics, 2022, 279: 125753. [61] ZHOU N, ZHAO M N, XU B S, et al. Effects of fiber aspect ratio and fabrication temperature on the microstructure and mechanical properties of elastic fibrous porous ceramics by press-filtration method[J]. Ceramics International, 2023, 49(7): 11038-11046. [62] WANG H B, QUAN X D, YIN L H, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107022. [63] LI L, LIU X L, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: a review[J]. Chemical Engineering Journal, 2021, 421: 127744. [64] LI L, REN H R, LIU Y L, et al. Facile construction of hierarchical porous ultrafine alumina fibers (HPAFs) and its application for dye adsorption[J]. Microporous and Mesoporous Materials, 2020, 308: 110544. [65] DANG W, WANG W H, WU P F, et al. Freeze-cast porous Al2O3 ceramics strengthened by up to 80% ceramics fibers[J]. Ceramics International, 2022, 48(7): 9835-9841. [66] DONG X, AN Q L, ZHANG S P, et al. Porous ceramics based on high-thermal-stability Al2O3-ZrO2 nanofibers for thermal insulation and sound absorption applications[J]. Ceramics International, 2023, 49(19): 31035-31045. [67] CHA H A, JO M G, MOON Y K, et al. Highly porous YSZ ceramic foams using hollow spheres with holes in their shell for high-performance thermal insulation[J]. Journal of the European Ceramic Society, 2023, 43(15): 7041-7052. [68] MATSUDA R M, GUBAREVICH A V, WADA H, et al. Effect of sintering temperature on the characteristics of ceramic hollow spheres produced by sacrificial template technique[J]. Ceramics International, 2016, 42(7): 8409-8412. [69] ZHAO J L, LI J L, ZHANG X F, et al. Fabrication of porous Al2TiO5-Al2O3 ceramics using Al2O3 hollow spheres coated with TiO2 sol[J]. Ceramics International, 2022, 48(19): 27349-27359. [70] LIAO X, CHEN L, XIE Y, et al. Thermal properties of mullite based porous ceramics derived from high silica tailings obtained after extracting alumina from high alumina coal ash[J]. Journal of Physics and Chemistry of Solids, 2023, 180: 111465. [71] YANG F Y, ZHAO S, CHEN G B, et al. High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure[J]. Advanced Powder Materials, 2024, 3(1): 100153. [72] YUN S J, KIM J H, JANG J, et al. Fabrication of highly porous and adhesive thick Y2O3 film by room-temperature spray process for thermal insulation coating[J]. Ceramics International, 2023, 49(10): 16216-16224. [73] JIANG C, ZHU Z H, CHEN J. Laser texturing at interface for improved strain tolerance and thermal insulation performance of thermal barrier coatings[J]. Surface and Coatings Technology, 2023, 459: 129385. [74] PAKSERESHT A, SHARIFIANJAZI F, ESMAEILKHANIAN A, et al. Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: a systematic review[J]. Materials & Design, 2022, 222: 111044. [75] YAN G, SUN Y, ZHAO X L, et al. The enhanced thermal shock resistance performance induced by interface effect in blade-level La2Ce2O7/YSZ thermal barrier coating[J]. Applied Surface Science, 2023, 619: 156723. [76] YANG M, LI Z G, WANG X Y, et al. Effect of spraying ceramic powder pore structure on thermophysical properties of plasma-sprayed thermal barrier coatings[J]. Ceramics International, 2022, 48(1): 1125-1131. [77] WANG J S, SUN J B, ZHANG H, et al. Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings[J]. Journal of Alloys and Compounds, 2018, 730: 471-482. |
[1] | GUO Wei, PANG Laixue, WANG Wenchao, ZHANG Jiali, WANG Hua, BAI Shuxia. New Method and Effect Verification for Synthesizing Sodalite from Fly Ash Using Solvent-Free Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 584-592. |
[2] | ZHU Pengfei, YU Yi, SHI Yanran, YANG Heng, HE Yang, XU Fei, JIANG Linhua, CHU Hongqiang, XU Tianlei, XU Ning. Pore Structure Evolution of Limestone Powder Hardened Cement Slurry Based on Electrochemical Impedance Spectroscopy [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 35-43. |
[3] | SUN Jing, HONG Junzhe, WANG Shen, CHANG Pu, JIA Xiaojing, LIU Hongbo. Preparation and Shrinkage Performance of Porous Basalt Coarse Aggregate HPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 84-91. |
[4] | LI Yongqing, NI Yongjun, LI Fangfang, GUO Weilong, CAO Xuanhao, GUAN Bowen. Properties of Tailings Powder-Fly Ash-Cement Composite Cementitious System [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 236-245. |
[5] | ZHAO Chenglin, YUAN Wenhai, DONG Yiran, JIANG Congcong, HE Biao, HUANG Shifeng, CHENG Xin. Preparation of Foamed Ceramics from Granite Waste and Glass Waste Residue [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 329-338. |
[6] | GUO Zheng, MU Song, ZHUANG Zhijie, ZHANG Hao, ZHANG Lei. Research Progress on Properties of Cement-Based Materials under Medium or High Vacuum Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3075-3082. |
[7] | SHEN Xin, WANG Min, HUANG Wen, ZHANG Kunyue, GUO Suihua, WEN Zhaijun. Strength Characteristics and Mechanism of Low-Heat Portland Cement at High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3100-3108. |
[8] | ZHOU Wenjian, XUE Wen, XU Dan, LI Ying. Research on Basic Properties and Mechanism of Carya Cathayensis Peels Biochar Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3186-3195. |
[9] | ZHANG Tao, WANG Teng, ZHANG Yan, TAN Hongbo, LIU Jialong, DONG Chao. Effect of GGBS on Properties and Chloride Binding of Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3240-3247. |
[10] | SHI Xinchao, FANG Jingrui, ZHI Xiao, CHEN Ge, MA Tengkun, ZHANG Shuai, QU Qiqi. Effects of Pore Structure and Water Content on Carbonation Curing Performance of Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2692-2702. |
[11] | ZHOU Libo, CHEN Ping, HU Cheng, RONG Beiguo, ZHANG Jian, LIANG Xiang, XIA Haiyang, LIANG Zhifeng. Hydration Hardening Characteristics of Steel Slag-Red Mud-Cement Based Composite Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2837-2845. |
[12] | LI Qiu, WEI Qi, GENG Haining, LI Huahui, CHEN Wei. Preparation and Performance of Sealing Materials for High Integrity Containers for Low and Intermediate Radioactive Waste Disposal [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2290-2299. |
[13] | HE Yalan, NING Lin, LI Yang, ZHONG Xiujie. Study on Pore Structure and Water Migration Characteristics of Cement Mortar after High Temperature Based on NMR Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2336-2343. |
[14] | YU Zhen, SUN Jiangtao, WU Dinglue, LU Zili, HE Tao, LI Zhitang, SHEN Weiguo. Effect of Clay Powder in Manufactured Sand on Properties of Mortar and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2372-2381. |
[15] | LIU Jin, HAN Da, ZHANG Zengqi. Effects of Single-Doped Fly Ash and GGBS on Hydration Process and Strength of Magnesium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2472-2478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||