[1] 孙 兵. 龙门石窟渗水病害机理分析及防渗材料试验研究[D]. 武汉: 中国地质大学, 2006. SUN B. Mechanism analysis of seepage disease in Longmen grottoes and experimental study on impervious materials[D]. Wuhan: China University of Geosciences, 2006 (in Chinese). [2] 方 云, 刘祥友, 胡学军, 等. 龙门石窟防渗灌浆试验研究[J]. 石窟寺研究, 2010(1): 221-243. FANG Y, LIU X Y, HU X J, et al. Study on grouting experimental against seepage of the Longmen grottoes[J]. Studies of the Cave Temples, 2010(1): 221-243 (in Chinese). [3] 李心坚. 龙门石窟保护中的灌浆技术[J]. 雕塑, 2008(6): 36-37. LI X J. The grouting technique of protecting the Longmen grottoes[J]. Sculpture, 2008(6): 36-37 (in Chinese). [4] 方 云, 王金华, 赵 岗. 心系石窟: 岩土文物保护研究论文选[M]. 武汉: 中国地质大学出版社, 2017. FANG Y, WANG J H, ZHAO G. Xinxi grottoes: selected papers on the protection of geotechnical cultural relics[M]. Wuhan: China University of Geosciences Press, 2017 (in Chinese). [5] 严绍军, 皮 雷, 方 云, 等. 龙门石窟偏高岭土-超细水泥复合灌浆材料研究[J]. 石窟寺研究, 2013(1): 393-404. YAN S J, PI L, FANG Y, et al. Research on metakaolin and micro fine cement composite grouting material in Longmen grottoes[J]. Studies of the Cave Temples, 2013(1): 393-404 (in Chinese). [6] 封孝信, 冯乃谦. 水泥及混凝土中的有害碱与无害碱[J]. 混凝土, 2000(10): 3-7. FENG X X, FENG N Q. Deleterious alkali and non-deleterious alkali in cement and concrete[J]. Concrete, 2000(10): 3-7 (in Chinese). [7] 莫祥银, 许仲梓, 唐明述. 国内外混凝土碱集料反应研究综述[J]. 材料科学与工程, 2002, 20(1): 128-132 MO X Y, XU Z Z, TANG M S. Review of alkali aggregate reaction and its research progress[J]. Materials Science and Engineering, 2002, 20(1): 128-132 (in Chinese). [8] 贾耀东. 大掺量矿物掺合料混凝土的碳化特性研究[D]. 北京: 清华大学, 2012. JIA Y D. Study on carbonation characteristics of concrete with large amount of mineral admixture[D]. Beijing: Tsinghua University, 2012 (in Chinese). [9] VASCONCELOS R G W, WALKLEY B, DAY S, et al. 18-month hydration of a low-pH cement for geological disposal of radioactive waste: the cebama reference cement[J]. Applied Geochemistry, 2020, 116: 104536. [10] CHENG A, LIN W T, CHAO S J, et al. Composition and selected properties of low pH mortars and concretes for radioactive waste repositories[J]. MATEC Web of Conferences, 2020, 322: 01033. [11] KHAN K, ULLAH M F, SHAHZADA K, et al. Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar[J]. Construction and Building Materials, 2020, 258: 119589. [12] 罗旌旺, 卢都友, 许 涛, 等. 偏高岭土对硅酸盐水泥浆体干燥收缩行为的影响及机理[J]. 硅酸盐学报, 2011, 39(10): 1687-1693. LUO J W, LU D Y, XU T, et al. Effect of metakaolin on drying shrinkage behaviour of Portland cement pastes and its mechanism[J]. Journal of the Chinese Ceramic Society, 2011, 39(10): 1687-1693 (in Chinese). [13] 喻 巍. 偏高岭土对水泥石的水化产物影响机理研究[D]. 武汉: 武汉理工大学, 2013. YU W. Study on the influence mechanism of metakaolin on hydration products of cement paste[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). [14] 许博超. 偏高岭土对水泥水化过程影响的机理研究[D]. 北京: 北京建筑大学, 2015. XU B C. Study on mechanism of metakaolin's influence on cement hydration process[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015 (in Chinese). [15] MOSTAFA N Y, BROWN P W. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry[J]. Thermochimica Acta, 2005, 435(2): 162-167. [16] WEI J Q, GENCTURK B. Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite[J]. Cement and Concrete Research, 2019, 123: 105772. [17] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [18] 杨南如, 钟白茜, 董 攀, 等. 钙矾石的形成和稳定条件[J]. 硅酸盐学报, 1984, 12(2): 155-165. YANG N R, ZHONG B Q, DONG P, et al. Formation and stability conditions of ettringite[J]. Journal of the Chinese Ceramic Society, 1984, 12(2): 155-165 (in Chinese). [19] 曹德光, 苏达根, 杨占印, 等. 偏高岭石的微观结构与键合反应能力[J]. 矿物学报, 2004, 24(4): 366-372. CAO D G, SU D G, YANG Z Y, et al. Microstructure and bonding reaction ability of metakaolinite[J]. Acta Mineralogica Sinica, 2004, 24(4): 366-372 (in Chinese). [20] KUZIELOVÁ E, SLANÝ M, ŽEMLIČKA M, et al. Phase composition of silica fume: portland cement systems formed under hydrothermal curing evaluated by FTIR, XRD, and TGA[J]. Materials, 2021, 14(11): 2786. [21] GARCÍA C J, SÁNCHEZ M M, ALONSO A M, et al. Study of the microstructure evolution of low-pH cements based on ordinary Portland cement (OPC) by mid- and near-infrared spectroscopy, and their influence on corrosion of steel reinforcement[J]. Materials, 2013, 6(6): 2508-2521. [22] CODINA M, CAU-DIT-COUMES C, LE BESCOP P, et al. Design and characterization of low-heat and low-alkalinity cements[J]. Cement and Concrete Research, 2008, 38(4): 437-448. [23] SONG F, YU Z L, YANG F L, et al. Strätlingite and calcium hemicarboaluminate hydrate in belite-calcium sulphoaluminate cement[J]. Ceramics-Silikaty, 2014, 58(4): 269-274. [24] HONG S Y, GLASSER F P. Alkali sorption by C-S-H and C-A-S-H gels[J]. Cement and Concrete Research, 2002, 32(7): 1101-1111. [25] BACH T T H, CHABAS E, POCHARD I, et al. Retention of alkali ions by hydrated low-pH cements: mechanism and Na+/K+ selectivity[J]. Cement and Concrete Research, 2013, 51: 14-21. |