[1] 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计规范: GB/T 50476—2008[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for durability design of concrete structures: GB/T 50476—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [2] YANG D Y, LUO J J. The damage of concrete under flexural loading and salt solution[J]. Construction and Building Materials, 2012, 36: 129-134. [3] 刘新荣, 陈 海, 庄 炀, 等. 硫酸盐侵蚀下混凝土细观模型及参数表征[J/OL]. 工业建筑: 1-11 [2023-09-19]. http://kns.cnki.net/kcms/detail/11.2068.TU.20230705.2110.006.html. LIU X R, CHEN H, ZHUANG Y, et al. Fine-scale modeling and parameter characterization of concrete under sulfate attack[J/OL]. Industrial Building: 1-11 [2023-09-10]. http://kns.cnki.net/kcms/detail/11.2068.TU.20230705.2110.006.html (in Chinese). [4] 刘金龙, 韩建德, 王曙光, 等. 硫酸盐侵蚀与环境多因素耦合作用下混凝土耐久性研究进展[J]. 混凝土, 2014(9): 33-40. LIU J L, HAN J D, WANG S G, et al. Overview of concrete durability under sulfate attack and multi-factor coupling effects[J]. Concrete, 2014(9): 33-40 (in Chinese). [5] 仵江涛, 何 锐, 王笑风, 等. 硫酸盐侵蚀混凝土内外影响因素及影响机理研究进展[J]. 硅酸盐通报, 2019, 38(1): 110-117. WU J T, HE R, WANG X F, et al. Research progress on inside and outside factors and influence mechanism of sulfate attack concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 110-117 (in Chinese). [6] 徐国良, 王彩辉. 结构混凝土耐久性影响因素的研究进展与探讨[J]. 材料导报, 2013, 27(11): 111-117. XU G L, WANG C H. Research progress and discussion on the factors influencing the durability of structural concrete[J]. Materials Review, 2013, 27(11): 111-117 (in Chinese). [7] BROWN P W. Thaumasite formation and other forms of sulfate attack[J]. Cement and Concrete Composites, 2002, 24(3/4): 301-303. [8] 宋俊杰. 宁夏地区在役临水钢筋混凝土柱腐蚀现状调研和剩余极限承载力预测研究[D]. 银川: 宁夏大学, 2022. SONG J J. Investigation on corrosion status and prediction of residual ultimate bearing capacity of existing waterfront reinforced concrete columns in Ningxia[D]. Yinchuan: Ningxia University, 2022 (in Chinese). [9] LIU F, ZHANG T H, LUO T, et al. Study on the deterioration of concrete under dry-wet cycle and sulfate attack[J]. Materials, 2020, 13(18): 4095. [10] 姜 磊, 牛荻涛. 硫酸盐与冻融环境下混凝土本构关系研究[J]. 四川大学学报(工程科学版), 2016, 48(3): 71-78. JIANG L, NIU D T. Study on constitutive relation of concrete under sulfate attack and freeze-thaw environment[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(3): 71-78 (in Chinese). [11] XU F, WANG S L, LI T, et al. The mechanical properties and resistance against the coupled deterioration of sulfate attack and freeze-thaw cycles of tailing recycled aggregate concrete[J]. Construction and Building Materials, 2021, 269: 121273. [12] 张广泰, 张路杨, 陈 勇, 等. 荷载-硫酸盐共同作用下纤维混凝土柱受压性能[J]. 湖南大学学报(自然科学版), 2022, 49(1): 102-112. ZHANG G T, ZHANG L Y, CHEN Y, et al. Compression behavior of fiber concrete column under combined action of load and sulfate attack[J]. Journal of Hunan University (Natural Sciences), 2022, 49(1): 102-112 (in Chinese). [13] 逯静洲, 国 力, 朱孔峰, 等. 经硫酸盐侵蚀和历史荷载联合作用的混凝土单轴受压应力-应变曲线[J]. 工业建筑, 2017, 47(6): 114-118. LU J Z, GUO L, ZHU K F, et al. Experimental research on uniaxial compressive stress-strain curves of concrete subjected to combined action of loading history and sulfate attack[J]. Industrial Construction, 2017, 47(6): 114-118 (in Chinese). [14] 刘 亚, 逯静洲, 朱孔峰, 等. 高强混凝土经轴压和硫酸盐侵蚀后的力学性能[J]. 长江科学院院报, 2017, 34(10): 134-138. LIU Y, LU J Z, ZHU K F, et al. Mechanical properties of high-strength concrete subjected to axial compression and sulfate attack[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(10): 134-138 (in Chinese). [15] YANG S Y, HAN M, CHEN X L, et al. Effect of sulfate crystallization on uniaxial compressive behavior of concrete subjected to combined actions of dry-wet and freeze-thaw cycles[J]. Journal of Cold Regions Engineering, 2023, 37(1): 04022015. [16] 韩 敏, 杨淑雁, 孔 骏, 等. 硫酸盐-干湿循环下钢筋与混凝土黏结性能试验研究[J]. 建筑科学, 2022, 38(11): 68-75. HAN M, YANG S Y, KONG J, et al. Experimental study on bond performance between steel bar and concrete under sulfate-dry-wet cycle[J]. Building Science, 2022, 38(11): 68-75 (in Chinese). [17] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. China Academy of Science and Architecture. Standard for long-term performance and durability test methods for ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [18] 刘 燕, 王泽坤, 李忠献, 等. 冻融-干湿耦合循环下粉煤灰混凝土损伤度分析[J]. 混凝土, 2020(5): 32-35+39. LIU Y, WANG Z K, LI Z X, et al. Analysis on the damage degree of fly ash concrete under freeze-thaw-dry-wet coupling cycle[J]. Concrete, 2020(5): 32-35+39 (in Chinese). [19] YANG S Y, ACARTURK B C, BURRIS L E. Role of pore structure on resistance to physical crystallization damage of calcium sulfoaluminate belite (CSAB) cement blends[J]. Cement and Concrete Research, 2022, 159: 106886. [20] YANG S Y, HAN M, CHEN X L, et al. Influence of sulfate crystallization on bond-slip behavior between deformed rebar and concrete subjected to combined actions of dry-wet cycle and freeze-thaw cycle[J]. Construction and Building Materials, 2022, 345: 128368. [21] LI G F, SHEN X D. A study of the durability of aeolian sand powder concrete under the coupling effects of freeze-thaw and dry-wet conditions[J]. JOM, 2019, 71(6): 1962-1974. [22] XIAO Q H, LI Q, CAO Z Y, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials, 2019, 200: 344-355. [23] 李立辉. 盐碱环境下混凝土冻融-干湿循环复合作用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. LI L H. Study on the combined action of freeze-thaw-dry-wet cycle of concrete in saline-alkaline environment[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese). [24] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京: 清华大学出版社, 1997. GUO Z H. Strength and deformation of concrete-experimental basis and constitutive relationship[M]. Beijing: Tsinghua University Press, 1997 (in Chinese). [25] LIAO K X, ZHANG Y P, ZHANG W P, et al. Modeling constitutive relationship of sulfate-attacked concrete[J]. Construction and Building Materials, 2020, 260: 119902. [26] YANG D Q, YAN C W, LIU S G, et al. Stress-strain constitutive model of concrete corroded by saline soil under uniaxial compression[J]. Construction and Building Materials, 2019, 213: 665-674. |