[1] 张高展, 吴明明, 杨 军, 等. 低收缩防辐射超高性能混凝土的制备及其性能形成机理[J]. 硅酸盐学报, 2021, 49(11): 2405-2415. ZHANG G Z, WU M M, YANG J, et al. Preparation of low-shrinkage and radiation-shielding ultra-high performance concrete and its performance formation mechanism[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2405-2415 (in Chinese). [2] 孙 蓓, 焦楚杰. 防辐射混凝土的研究现状与发展趋势[J]. 混凝土, 2017(12): 143-146. SUN B, JIAO C J. Research status and development trend of radiation shielding concrete[J]. Concrete, 2017(12): 143-146 (in Chinese). [3] TOBBALA D E. Effect of Nano-ferrite addition on mechanical properties and gamma ray attenuation coefficient of steel fiber reinforced heavy weight concrete[J]. Construction and Building Materials, 2019, 207: 48-58. [4] DAUNGWILAILUK T, YENCHAI C, RUNGJAROENKITI W, et al. Use of barite concrete for radiation shielding against gamma-rays and neutrons[J]. Construction and Building Materials, 2022, 326: 126838. [5] KHAN M H, ZHAO Q H, ALI SIKANDAR M, et al. Evaluation of mechanical strength, gamma-ray shielding characteristics, and ITZ microstructural properties of heavyweight concrete using nano-silica (SiO2) and barite aggregates[J]. Construction and Building Materials, 2024, 419: 135483. [6] 贺智敏, 龙广成, 谢友均, 等. 蒸养混凝土的毛细吸水特性研究[J]. 建筑材料学报, 2012, 15(2): 190-195. HE Z M, LONG G C, XIE Y J, et al. Water sorptivity of steam curing concrete[J]. Journal of Building Materials, 2012, 15(2): 190-195 (in Chinese). [7] 王义盛, 赵小鹏, 梁玉强, 等. 养护制度对轻质管片混凝土力学性能和水化性能的影响[J]. 混凝土, 2022(3): 164-167. WANG Y S, ZHAO X P, LIANG Y Q, et al. Effect of curing regime on mechanical properties and hydration properties of lightweight segment concrete[J]. Concrete, 2022(3): 164-167 (in Chinese). [8] 葛竞成. 养护制度对轻质超高性能混凝土微观结构的影响机理[D]. 合肥: 安徽建筑大学, 2021. GE J C. Influence mechanism of curing system on microstructure of lightweight ultra-high performance concrete[D]. Hefei: Anhui Jianzhu University, 2021 (in Chinese). [9] 孙嘉伦, 张春晓, 毛继泽, 等. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 66-70. SUN J L, ZHANG C X, MAO J Z, et al. Affecting mechanism of curing regimes on the strength of ultra-high performance concrete[J]. Materials Reports, 2024, 38(18): 66-70 (in Chinese). [10] 陈聪聪, 吴泽媚, 胡 翔, 等. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 139-149. CHEN C C, WU Z M, HU X, et al. Influence of steel fiber shape and curing system on strength and toughness of UHPC[J]. Materials Reports, 2024, 38(15): 139-149 (in Chinese). [11] 陈清己. 重晶石防辐射混凝土配合比设计及其性能研究[D]. 长沙: 中南大学, 2010. CHEN Q J. Mix proportion design and performance study of barite radiation-proof concrete[D]. Changsha: Central South University, 2010 (in Chinese). [12] 伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 长沙: 中南大学, 2008. WU C M. Experimental study on strong radiation shielding concrete for nuclear engineering[D]. Changsha: Central South University, 2008 (in Chinese). [13] 罗林成. 高温对防辐射混凝土性能影响及评价方法研究[D]. 衡阳: 南华大学, 2022. LUO L C. Study on the influence of high temperature on the performance of radiation-proof concrete and its evaluation method[D]. Hengyang: University of South China, 2022 (in Chinese). [14] GONZÁLEZ-ORTEGA M A, CAVALARO S H P, AGUADO A. Influence of barite aggregate friability on mixing process and mechanical properties of concrete[J]. Construction and Building Materials, 2015, 74: 169-175. [15] LO MONTE F, GAMBAROVA P G. Thermo-mechanical behavior of baritic concrete exposed to high temperature[J]. Cement and Concrete Composites, 2014, 53: 305-315. [16] 杜东航. 医用射线屏蔽高性能防辐射混凝土制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. DU D H. Preparation and properties of high-performance radiation-proof concrete for medical radiation shielding[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). |