[1] 陈小羊, 冯小江, 王晓明, 等. 袖阀管注浆用套壳料配合比优化[J]. 洛阳理工学院学报(自然科学版), 2024, 34(1): 39-43. CHEN X Y, FENG X J, WANG X M, et al. Optimization of casing mix ratio for sleeve valve pipe grouting[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2024, 34(1): 39-43 (in Chinese). [2] 韩丽英. 袖阀管注浆法套壳料的配比试验研究[D]. 太原: 太原理工大学, 2012. HAN L Y. Experimental study on the mixture ratio of sleeve valve tube grouting casing material[D].Taiyuan: Taiyuan University of Technology, 2012 (in Chinese). [3] 王 生, 郭佳奇, 刘彦清, 等. 袖阀管注浆用套壳料配合比试验研究及工程应用[J]. 混凝土与水泥制品, 2017(6): 76-81. WANG S, GUO J Q, LIU Y Q, et al. Experimental study and engineering application of casing material mixture ratio for sleeve valve tube grouting[J]. China Concrete and Cement Products, 2017(6): 76-81 (in Chinese). [4] 周茗如, 张建斌, 陈志超, 等. 基于黄土地基袖阀管注浆套壳料配合比试验研究[J]. 硅酸盐通报, 2018, 37(12): 3963-3970. ZHOU M R, ZHANG J B, CHEN Z C, et al. Experimental study on mixing ratio of sleeve valve pipe grouting casing material based on loess foundation[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3963-3970 (in Chinese). [5] 雷 浩, 吴红刚, 牌立芳, 等. 粗砂套壳料的袖阀管注浆场地试验研究[J]. 铁道标准设计, 2020, 64(11): 13-19. LEI H, WU H G, PAI L F, et al. Study on the field test of sleeve valve grouting with coarse sand as casing material[J]. Railway Standard Design, 2020, 64(11): 13-19 (in Chinese). [6] 杨明纬. 声发射检测[M]. 北京: 机械工业出版社, 2005. YANG M W. Acoustic emission detection[M]. Beijing: China Machine Press, 2005 (in Chinese). [7] 陈忠购. 基于声发射技术的钢筋混凝土损伤识别与劣化评价[D]. 杭州: 浙江大学, 2018. CHEN Z G. Damage identification and deterioration evaluation of reinforced concrete based on acoustic emission technology[D].Hangzhou: Zhejiang University, 2018 (in Chinese). [8] 袁志颖, 陈 波, 陈家林, 等. 不同加载速率下蒸养混凝土单轴压缩声发射特性研究[J]. 混凝土, 2024(3): 30-34+41. YUAN Z Y, CHEN B, CHEN J L, et al. Study on acoustic emission characteristics of steam-cured concrete under uniaxial compression at different loading rates[J]. Concrete, 2024(3): 30-34+41 (in Chinese). [9] 郑远翔, 杜献杰, 冯国瑞, 等. 基于声发射特征的不同高径比矸石胶结充填柱单轴压缩损伤演化[J]. 工程科学学报, 2024, 46(8): 1370-1380. ZHENG Y X, DU X J, FENG G R, et al. Uniaxial compression damage evolution of gangue-cemented backfill columns with different height-diameter ratios based on acoustic emission characteristics[J]. Chinese Journal of Engineering, 2024, 46(8): 1370-1380 (in Chinese). [10] 王桂林, 王润秋, 孙 帆, 等. 单轴压缩下溶隙灰岩声发射RA-AF特征及破裂模式研究[J]. 中国公路学报, 2022, 35(8): 118-128. WANG G L, WANG R Q, SUN F, et al. RA-AF characteristics of acoustic emission and failure mode of Karst-fissure limestone under uniaxial compression[J]. China Journal of Highway and Transport, 2022, 35(8): 118-128 (in Chinese). [11] Japan Federation of Construction Material Industries. Monitoring method for active cracks in concrete by acoustic emission: JCMS-III B5706[S]. Japan: Japan Federation of Construction Material Industries, 2003. [12] 薛 熠, 张智豪, 刘 嘉, 等. 高温加热-液氮冷冲击处理后花岗岩声发射演化特征及损伤本构模型[J]. 岩土工程学报, 2024, 46(9): 1849-1859. XUE Y, ZHANG Z H, LIU J, et al. Acoustic emission evolution characteristics and damage constitutive model of granite after high-temperature heating and liquid nitrogen cold shock treatment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1849-1859 (in Chinese). [13] 李 漾, 刘 洋, 丁 翠, 等. 不同层理煤破坏过程声发射RA-AF特征研究[J]. 煤矿安全, 2022, 53(1): 37-43. LI Y, LIU Y, DING C, et al. RA-AF characteristics of acoustic emission in uniaxial compression failure of different bedded coal[J]. Safety in Coal Mines, 2022, 53(1): 37-43 (in Chinese). [14] 吴顺川, 甘一雄, 任 义, 等. 基于RA与AF值的声发射指标在隧道监测中的可行性[J]. 工程科学学报, 2020, 42(6): 723-730. WU S C, GAN Y X, REN Y, et al. Feasibility research of AE monitoring index in tunnel based on RA and AF[J]. Chinese Journal of Engineering, 2020, 42(6): 723-730 (in Chinese). [15] FARHIDZADEH A, SALAMONE S, SINGLA P. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(14): 1722-1735. [16] WEI H, LIU Y Y, LI J, et al. Characterizing fatigue damage evolution in asphalt mixtures using acoustic emission and Gaussian mixture model analysis[J]. Construction and Building Materials, 2023, 409: 133973. [17] 黄 虎, 刘赵涵, 邱庆明, 等. 基于声发射检测的CSG材料损伤演变及裂纹识别[J]. 建筑材料学报, 2023, 27(6): 565-572. HUANG H, LIU Z H, QIU Q M, et al. Damage evolution and crack identification of CSG materials based on acoustic emission detection technology[J]. Journal of Building Materials, 2023, 27(6): 565-572 (in Chinese). [18] YU X, ZUO J P, MAO L T, et al. Uncovering the progressive failure process of primary coal-rock mass specimens: insights from energy evolution, acoustic emission crack patterns, and visual characterization[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 178: 105773. [19] HERZOG A, MITCHELL J K. Reactions accompanying stabilization of clay with cement[J]. Highway Research Board, 1963, 36: 146-171. [20] 丁国庆, 蒋林华, 储洪强, 等. 膨润土种类及掺量对塑性混凝土性能的影响[J]. 水利水电科技进展, 2011, 31(2): 34-37. DING G Q, JIANG L H, CHU H Q, et al. Influences of types and dosage of bentonite on properties of plastic concrete[J]. Advances in Science and Technology of Water Resources, 2011, 31(2): 34-37 (in Chinese). [21] 张经双, 马芹永. 不同含水率预拌料混凝土抗压强度试验与微观结构分析[J]. 硅酸盐通报, 2013, 32(11): 2331-2336. ZHANG J S, MA Q Y. Cubic compressive test and microstructure of ready-mixed materials with different water contents[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(11): 2331-2336 (in Chinese). [22] 王子振, 王瑞和, 李天阳, 等. 孔隙结构对干岩石弹性波衰减影响的数值模拟研究[J]. 地球物理学进展, 2014, 29(6): 2766-2773. WANG Z Z, WANG R H, LI T Y, et al. Numerical-modeling of pore structure effects on acoustic attenuation in dry rocks[J]. Progress in Geophysics, 2014, 29(6): 2766-2773 (in Chinese). [23] REYNOLDS D A, QUATIERI T F, DUNN R B. Speaker verification using adapted Gaussian mixture models[J]. Digital Signal Processing, 2000, 10(1/2/3): 19-41. |