[1] ZHI F F, JIANG Y, GUO M Z, et al. Effect of polyacrylamide on the carbonation behavior of cement paste[J]. Cement and Concrete Research, 2022, 156: 106756. [2] CHI L, WANG Z, LU S, et al. Development of mathematical models for predicting the compressive strength and hydration process using the EIS impedance of cementitious materials[J]. Construction and Building Materials, 2019, 208: 659-668. [3] PARK J, SONG H, CHOI H. Estimation of water-to-cement ratio in cementitious materials using electrochemical impedance spectroscopy and artificial neural networks[J]. Construction and Building Materials, 2022, 350: 128843. [4] WANG X F, ZHANG J H, HAN R, et al. Evaluation of damage and repair rate of self-healing microcapsule-based cementitious materials using electrochemical impedance spectroscopy[J]. Journal of Cleaner Production, 2019, 235: 966-976. [5] SONG G L. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cement and Concrete Research, 2000, 30(11): 1723-1730. [6] JIANG L H, LI C Z, ZHU C L, et al. The effect of tensile fatigue on chloride ion diffusion in concrete[J]. Construction and Building Materials, 2017, 151: 119-126. [7] 熊传胜. 硫酸盐侵蚀作用下水泥石的时变行为及预测模型研究[D]. 南京: 河海大学, 2016. XIONG C S. Study on time-varying behavior and prediction model under action of sulfate erosion[D]. Nanjing: Hohai University, 2016 (in Chinese). [8] CABEZA M, KEDDAM M, NÓVOA X R, et al. Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste[J]. Electrochimica Acta, 2006, 51(8/9): 1831-1841. [9] KEDDAM M, TAKENOUTI H, NÓVOA X R, et al. Impedance measurements on cement paste[J]. Cement and Concrete Research, 1997, 27(8): 1191-1201. [10] MACPHEE D E, SINCLAIR D C, CORMACK S L. Development of an equivalent circuit model for cement pastes from microstructural considerations[J]. Journal of the American Ceramic Society, 1997, 80(11): 2876-2884. [11] 史美伦, 陈志源. 混凝土阻抗谱的低频特性[J]. 硅酸盐学报, 1996, 24(6): 703-706. SHI M L, CHEN Z Y. Low frequency characteristics of impedance spectroscopy of concrete[J]. Journal of the Chinese Ceramic Society, 1996, 24(6): 703-706 (in Chinese). [12] 史美伦, 杨正宏. 混凝土阻抗谱的拓扑结构[J]. 建筑材料学报, 2002, 5(2): 132-136. SHI M L, YANG Z H. Topological structure of the spectroscopy of AC impedance for concrete[J]. Journal of Building Materials, 2002, 5(2): 132-136 (in Chinese). [13] 朱鹏飞. 调凝剂对掺大掺量石灰石粉水泥水化行为及混凝土绝热温升的影响[D]. 南京: 河海大学, 2021. ZHU P F. Effect of set-controlling admixture on hydration behavior and adiabatic temperature rise of high-volume of limestone powder cement[D]. Nanjing: Hohai University, 2021 (in Chinese). [14] 刘数华, 阎培渝. 石粉作为碾压混凝土掺合料的利用和研究综述[J]. 水力发电, 2007, 33(1): 69-71. LIU S H, YAN P Y. Summarization of utilization and researches on stone powder used as mineral admixtures in roller compacted concrete[J]. Water Power, 2007, 33(1): 69-71 (in Chinese). [15] 林基泳, 蒋 勇, 吴兴颜, 等. 石粉对混凝土性能影响的研究现状[J]. 硅酸盐通报, 2018, 37(12): 3842-3848. LIN J Y, JIANG Y, WU X Y, et al. Research status on influence of aggregate micro fines on concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3842-3848 (in Chinese). [16] 李光伟, 邓长军. 复掺石灰石粉和粉煤灰在西藏地区水工混凝土中应用试验研究[J]. 西北水电, 2012(5): 78-80. LI G W, DENG C J. Study on tests of application of limestone flour and flyash in hydraulic concrete in Tibet region[J]. Northwest Hydropower, 2012(5): 78-80 (in Chinese). [17] 蒋林华, 张 炎, 李辰治, 等. 石灰石粉水泥基材料的研究与应用进展[J]. 河海大学学报(自然科学版), 2018, 46(1): 83-89. JIANG L H, ZHANG Y, LI C Z, et al. Review on the research and application of cement-based materials with limestone powder[J]. Journal of Hohai University (Natural Sciences), 2018, 46(1): 83-89 (in Chinese). |