[1] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. [2] 秦泽敏. 石墨相氮化碳基材料光催化还原除铀研究进展[J]. 硅酸盐通报, 2022, 41(12): 4458-4468. QIN Z M. Research progress on photocatalytic reduction of uranium by g-C3N4 based materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4458-4468 (in Chinese). [3] FU J W, YU J G, JIANG C J, et al. G-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503. [4] 翟苓帆, 许贺可, 胡一凡, 等. g-C3N4/MgAl-LDH异质结的构建及其光催化产氢性能研究[J]. 广东化工, 2020, 47(10): 20-21. ZHAI L F, XU H K, HU Y F, et al. Fabrication of g-C3N4/Mg Al-LDH heterojunction for photocatalytic splitting H2O into H2[J]. Guangdong Chemical Industry, 2020, 47(10): 20-21 (in Chinese). [5] 陈 璞, 欧晓霞, 赵 可, 等. In2S3/g-C3N4复合光催化剂的制备及其光催化降解四环素[J]. 硅酸盐通报, 2023, 42(1): 310-318. CHEN P, OU X X, ZHAO K, et al. Preparation of In2S3/g-C3N4 composite photocatalyst and its photocatalytic degradation of tetracycline[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 310-318 (in Chinese). [6] JIANG J, CAO S W, HU C L, et al. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis, 2017, 38: 1981-1989. [7] LIU C Y, ZHANG Y H, DONG F, et al. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis[J]. Applied Catalysis B: Environmental, 2017, 203: 465-474. [8] SINGH N B, KUMAR M, RAI S. Geopolymer cement and concrete: properties[J]. Materials Today: Proceedings, 2020, 29: 743-748. [9] LU L, YANG Z X, HUANG M Y, et al. Microstructural and mechanical properties of photocatalytic cement mortar with g-C3N4/CoAl-LDH nanoflowers[J]. Journal of Building Engineering, 2023, 74: 106900. [10] XU J K, YANG H, YANG Z X, et al. The effect of TiO2@CoAl-LDH nanosphere on early hydration of cement and its photocatalytic depollution performance under UV-visible light[J]. Construction and Building Materials, 2022, 319: 126227. [11] LI X Y, ZHANG C L, XIONG C H, et al. Nitrogen defect-regulated g-C3N4 to enhance the photocatalytic degradation performance of NO pollutants in cement mortar[J]. Journal of Building Engineering, 2023, 70: 106259. [12] YANG Y, JI T, SU W Y, et al. Photocatalytic NOx abatement and self-cleaning performance of cementitious composites with g-C3N4 nanosheets under visible light[J]. Construction and Building Materials, 2019, 225: 120-131. [13] DUAN P, YAN C, ZhOU W. Effects of calcined layered double hydroxides on carbonation of concrete containing fly ash[J]. Construction and Building Materials, 2018, 160: 725-732. [14] XIONG X, YANG Z, YAN X, et al. Mechanical properties and microstructure of engineered cementitious composites with high volume steel slag and GGBFS[J]. Construction and Building Materials, 2023,398: 132512. [15] THONGSANITGARN P, WONGKEO W, CHAIPANICH A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: effect of limestone particle size[J]. Construction and Building Materials, 2014, 66: 410-417. [16] YANG Z, SHI P, ZHANG Y, et al. Effect of superabsorbent polymer introduction on properties of alkali-activated slag mortar[J]. Construction and Building Materials, 2022, 340: 127541. [17] HUANG M, YANG Z, LU L, et al. The preparation of g-C3N4/CoAl-LDH nanocomposites and their depollution performances in cement mortars under UV-visible light[J]. Catalysts, 2022, 12(4): 443. [18] YANG Z, XIONG X, CHEN S, et al. Effect of fineness on the hydration and microstructure of cementitious materials with high-volume steel slag and blast furnace slag[J]. Journal of Building Engineering, 2023, 78: 106682. [19] ZHANG S, NIU D. Hydration and mechanical properties of cement-steel slag system incorporating different activators[J]. Construction and Building Materials, 2023, 363: 129981. [20] WU Z, SHI C, KHAYAT K H, et al. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC)[J]. Cement and Concrete Composites, 2016, 70: 24-34. |