[1] LI Q S. The view of technological innovation in coal industry under the vision of carbon neutralization[J]. International Journal of Coal Science & Technology, 2021, 8(6): 1197-1207. [2] ZHANG Z E, WANG T, BLUNT M J, et al. Advances in carbon capture, utilization and storage[J]. Applied Energy, 2020, 278: 115627. [3] 王雪芳, 曾天鑫, 周豪杰. 碱激发剂对单组份碱激发镍渣水泥混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1008-1015. WANG X F, ZENG T X, ZHOU H J. Effect of alkali activator on carbonation resistance of single-component alkali-activated nickel slag cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 1008-1015 (in Chinese). [4] 王玲玲, 司晨玉, 李 畅, 等. 氢氧化钾-钠水玻璃激发剂对碱激发矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(8): 2654-2662+2695. WANG L L, SI C Y, LI C, et al. Effect of potassium hydroxide-sodium water glass activator on properties of alkali-activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2654-2662+2695 (in Chinese). [5] LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209. [6] ABDALQADER A F, JIN F, AL-TABBAA A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures[J]. Journal of Cleaner Production, 2016, 113: 66-75. [7] LI G Y, TAN H B, ZHANG J J, et al. Ground granulated blast-furnace slag/fly ash blends activated by sodium carbonate at ambient temperature[J]. Construction and Building Materials, 2021, 291: 123378. [8] KHMIRI A, SAMET B, CHAÂBOUNI M. Assessement of the waste glass powder pozzolanic activity by different methods[J]. 2012, 10(2): 322-328. [9] GAO X, YAO X, YANG T, et al. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits[J]. Construction and Building Materials, 2021, 308: 125015. [10] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [11] LI W T, YI Y L. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag[J]. Construction and Building Materials, 2020, 238: 117713. [12] PHOO-NGERNKHAM T, PHIANGPHIMAI C, INTARABUT D, et al. Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue[J]. Construction and Building Materials, 2020, 247: 118543. [13] GUO W C, WANG S, XU Z H, et al. Mechanical performance and microstructure improvement of soda residue-carbide slag-ground granulated blast furnace slag binder by optimizing its preparation process and curing method[J]. Construction and Building Materials, 2021, 302: 124403. [14] SONG S J, JENNINGS H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag[J]. Cement and Concrete Research, 1999, 29(2): 159-170. [15] NEDELJKOVĆ M, GHIASSI B, VAN DER LAAN S, et al. Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes[J]. Cement and Concrete Research, 2019, 116: 146-158. [16] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529. [17] KIM M S, JUN Y B, LEE C H, et al. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag[J]. Cement and Concrete Research, 2013, 54: 208-214. [18] MYERS R J, LOTHENBACH B, BERNAL S A, et al. Thermodynamic modelling of alkali-activated slag cements[J]. Applied Geochemistry, 2015, 61: 233-247. |