[1] ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21: 119-131. [2] 姜志翔, 郑 浩, 李锋民, 等. 生物炭碳封存技术研究进展[J]. 环境科学, 2013, 34(8): 3327-3333. JIANG Z X, ZHENG H, LI F M, et al. Research progress on biochar carbon sequestration technology[J]. Environmental Science, 2013, 34(8): 3327-3333 (in Chinese). [3] JANG J G, KIM G M, KIM H J, et al. Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials[J]. Construction and Building Materials, 2016, 127: 762-773. [4] LENG L J, HUANG H J, LI H, et al. Biochar stability assessment methods: a review[J]. Science of the Total Environment, 2019, 647: 210-222. [5] DAI Y J, ZHANG N X, XING C M, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review[J]. Chemosphere, 2019, 223: 12-27. [6] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. [7] YOU S M, OK Y S, CHEN S S, et al. A critical review on sustainable biochar system through gasification: energy and environmental applications[J]. Bioresource Technology, 2017, 246: 242-253. [8] MENSAH R, SHANMUGAM V, NARAYANAN S, et al. Biochar-added cementitious materials: a review on mechanical, thermal, and environmental properties[J]. Sustainability, 2021, 13(16): 9336. [9] AHMAD S, KHUSHNOOD R A, JAGDALE P, et al. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles[J]. Materials & Design, 2015, 76: 223-229. [10] GUPTA S, KUA H W, KOH H J. Application of biochar from food and wood waste as green admixture for cement mortar[J]. Science of the Total Environment, 2018, 619/620: 419-435. [11] GUPTA S, KUA H W. Carbonaceous micro-filler for cement: effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar[J]. Science of the Total Environment, 2019, 662: 952-962. [12] AKHTAR A, SARMAH A K. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties[J]. Science of the Total Environment, 2018, 616/617: 408-416. [13] 李 赫. 污泥生物炭混凝土性能及效益研究[D]. 西安: 长安大学, 2020. LI H. Performances and effects of the sludge biochar concrete[D]. Xi'an: Changan University, 2020 (in Chinese). [14] CUTHBERTSON D, BERARDI U, BRIENS C, et al. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties[J]. Biomass and Bioenergy, 2019, 120: 77-83. [15] 姜晓雨. 生物炭水泥基复合材料性能影响研究[D]. 邯郸: 河北工程大学, 2020. JIANG X Y. Research on the influence of biochar cement-based composite materials[D]. Handan: Hebei University of Engineering, 2020 (in Chinese). [16] TAN K H, PANG X J, QIN Y H, et al. Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures[J]. Construction and Building Materials, 2020, 263: 120616. [17] WU F, YU Q L, LIU C W. Durability of thermal insulating bio-based lightweight concrete: understanding of heat treatment on bio-aggregates[J]. Construction and Building Materials, 2021, 269: 121800. [18] 施麟芸, 匡敬忠, 刘松柏, 等. 铜尾矿建材化应用研究现状及矿物组成影响作用规律[J]. 硅酸盐通报, 2022, 41(10): 3511-3524. SHI L Y, KUANG J Z, LIU S B, et al. Research status of building material application of copper tailings and influencing rules of mineral composition[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3511-3524 (in Chinese). [19] 张学兵. 再生混凝土改性及配合比设计研究[D]. 长沙: 湖南大学, 2015. ZHANG X B. Modification and mix proportion design of recycled concrete[D]. Changsha: Hunan University, 2015 (in Chinese). [20] 黄开林, 李书进, 臧旭航. 不同类型再生细骨料对保温混凝土力学性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2341-2347+2379. HUANG K L, LI S J, ZANG X H. Effects of different types of recycled fine aggregate on mechanical properties of thermal insulation concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2341-2347+2379 (in Chinese). [21] 董帅锋. 高温损伤水泥砂浆微结构演化及水分传输与力学性能的试验研究[D]. 青岛: 青岛理工大学, 2019. DONG S F. Experimental study on microstructure evolution, water transport and mechanical properties of high temperature damaged cement mortar[D]. Qingdao: Qingdao Tehcnology University, 2019 (in Chinese). [22] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051. SHEN J R, XU Q J. Characteristics of pore structure change and compressive strength reduction of concrete under elevated temperatures[J]. Materials Reports, 2020, 34(2): 2046-2051 (in Chinese). [23] 陈 猛, 颜 鑫, 陈建淞, 等. 回收轮胎聚合物纤维混凝土高温损伤超声特性研究[J]. 材料导报, 2022, 36(11): 120-125. CHEN M, YAN X, CHEN J S, et al. Study on ultrasonic characteristics of high temperature damage of recycled tyre polymer fiber reinforced concrete[J]. Materials Reports, 2022, 36(11): 120-125 (in Chinese). [24] 彭小芹. 土木工程材料[M]. 4版. 重庆: 重庆大学出版社, 2021: 56-79. PENG X Q. Civil engineering materials [M]. 4th ed. Chongqing: Chongqing University Press, 202: 56-79 (in Chinese). |