BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2023, Vol. 42 ›› Issue (2): 383-392.
Special Issue: 水泥混凝土
• Cement and Concrete • Next Articles
SHEN Xin1, GUO Suihua1, LI Wenwei2, LU Chao2, ZHANG Kunyue1, WANG Min1, WEN Zhaijun1
Received:2022-09-29
Revised:2022-11-30
Online:2023-02-15
Published:2023-03-07
CLC Number:
SHEN Xin, GUO Suihua, LI Wenwei, LU Chao, ZHANG Kunyue, WANG Min, WEN Zhaijun. Research Status on Hydration and Properties of Low-Heat Portland Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 383-392.
| [1] JOHN V M, QUATTRONE M, ABRAO P C R A, et al. Rethinking cement standards: opportunities for a better future[J]. Cement and Concrete Research, 2019, 124: 105832. [2] DOUGLAS HOOTON R. Future directions for design, specification, testing, and construction of durable concrete structures[J]. Cement and Concrete Research, 2019, 124: 105827. [3] ENVIRONMENT U N, SCRIVENER K L, JOHN V M, et al. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [4] 马忠诚, 姚 燕, 文寨军, 等. 低热硅酸盐水泥的研究进展[J]. 新型建筑材料, 2019, 46(1): 1-5. MA Z C, YAO Y, WEN Z J, et al. Research progress of low heat Portland cement[J]. New Building Materials, 2019, 46(1): 1-5 (in Chinese). [5] 魏国力, 游杰勇, 李培彦, 等. 低热水泥复掺粉煤灰体系的强度放热与水化演变研究[J]. 混凝土, 2022(2): 54-59. WEI G L, YOU J Y, LI P Y, et al. Study on strength exothermic and hydration evolution of low heat cement mixed with fly ash[J]. Concrete, 2022(2): 54-59 (in Chinese). [6] MA Z C, YAO Y, LIU Z C, et al. Effect of calcination and cooling conditions on mineral compositions and properties of high-magnesia and low-heat Portland cement clinker[J]. Construction and Building Materials, 2020, 260: 119907. [7] 沈 燕, 李雪飘. 贝利特活化的研究进展[J]. 硅酸盐通报, 2018, 37(2): 519-523. SHEN Y, LI X P. Research progress of belite activation[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(2): 519-523 (in Chinese). [8] 吴梦雪, 姚 武, 李 晨, 等. 硼、钠复合掺杂对贝利特-硫铝酸钙水泥性能及微观结构的影响[J]. 材料导报, 2017, 31(5): 128-133. WU M X, YAO W, LI C, et al. Effect of combined addition of boron and sodium on property and micro-structure of beliet-sulphoaluminate cement[J]. Materials Reports, 2017, 31(5): 128-133 (in Chinese). [9] MORSLI K, TORRE Á G, ZAHIR M, et al. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers[J]. Cement and Concrete Research, 2007, 37(5): 639-646. [10] 冯培植, 郭随华. 掺微量元素烧制低钙水泥的研究[J]. 水泥, 1997(3): 6-10. FENG P Z, GUO S H. Research on sintering and producing low calcium cement by adding trace elements[J]. Cement, 1997(3): 6-10 (in Chinese). [11] 肖建敏, 范海宏, 武亚磊, 等. 污泥灰替代粘土煅烧水泥熟料的29Si固体高分辨核磁共振分析[J]. 材料科学与工程学报, 2016, 34(3): 460-464. XIAO J M, FAN H H, WU Y L, et al. 29Si solid-state high resolution NMR analysis of cement clinkers calcined by sewage sludge ash instead of clay[J]. Journal of Materials Science and Engineering, 2016, 34(3): 460-464 (in Chinese). [12] 黄 文, 文寨军, 王 敏. 磷硫复合掺杂对硅酸二钙晶型结构的影响[J]. 硅酸盐通报, 2018, 37(8): 2502-2505+2511. HUANG W, WEN Z J, WANG M. Effects of phosphorus and sulfur doping on the crystal structure of dicalcium silicate[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2502-2505+2511 (in Chinese). [13] CUESTA A, LOSILLA E R, ARANDA M A G, et al. Reactive belite stabilization mechanisms by boron-bearing dopants[J]. Cement and Concrete Research, 2012, 42(4): 598-606. [14] 钟 侚, 蹇守卫, 柯 凯. V5+及Cr3+掺杂对C2S多晶型的影响机制[J]. 济南大学学报(自然科学版), 2011, 25(4): 349-353. ZHONG X, JIAN S W, KE K. Influence of V5+ and Cr3+ doping on polymorphic forms of C2S[J]. Journal of University of Jinan (Science and Technology), 2011, 25(4): 349-353 (in Chinese). [15] 王 政, 巴恒静, 李家和, 等. 固溶异离子对高贝利特水泥性能的影响[J]. 武汉理工大学学报, 2005, 27(7): 33-35+49. WANG Z, BA H J, LI J H, et al. Effect of solid solubility of hetero-ion on properties of high-belite cement[J]. Journal of Wuhan University of Technology, 2005, 27(7): 33-35+49 (in Chinese). [16] KRISKOVA L, PONTIKES Y, ZHANG F, et al. Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cement and Concrete Research, 2014, 55: 59-68. [17] 曲艳召. 水泥细度与碱硫含量对混凝土强度发展的影响[D]. 重庆: 重庆大学, 2012: 27-30. QU Y Z. Effect of cement fineness and content of alkali and sulfur of cement on the development of concrete strength[D]. Chongqing: Chongqing University, 2012: 27-30 (in Chinese). [18] 张五怡, 聂 松, 徐名凤, 等. 高贝利特硫铝酸盐水泥活化研究进展[J]. 硅酸盐通报, 2022, 41(9): 2979-2992. ZHANG W Y, NIE S, XU M F, et al. Research progress on activation of high belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2979-2992 (in Chinese). [19] BOUZIDI M A, TAHAKOURT A, BOUZIDI N, et al. Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact[J]. Arabian Journal for Science and Engineering, 2014, 39(12): 8659-8668. [20] SINYOUNG S, KUNCHARIYAKUN K, ASAVAPISIT S, et al. Synthesis of belite cement from nano-silica extracted from two rice husk ashes[J]. Journal of Environmental Management, 2017, 190: 53-60. [21] CHEN Y L, LIN C J, KO M S, et al. Characterization of mortars from belite-rich clinkers produced from inorganic wastes[J]. Cement and Concrete Composites, 2011, 33(2): 261-266. [22] SCRIVENER K L, JUILLAND P, MONTEIRO P J M. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research, 2015, 78: 38-56. [23] FUJII K, KONDO W. Rate and mechanism of hydration of β-dicalcium silicate[J]. Journal of the American Ceramic Society, 1979, 62(3/4): 161-167. [24] NICOLEAU L, NONAT A, PERREY D. The di- and tricalcium silicate dissolutions[J]. Cement and Concrete Research, 2013, 47: 14-30. [25] ZAJAC M, SKOCEK J, LOTHENBACH B, et al. Late hydration kinetics: indications from thermodynamic analysis of pore solution data[J]. Cement and Concrete Research, 2020, 129: 105975. [26] DURGUN E, MANZANO H, PELLENQ R, et al. Understanding and controlling the reactivity of the calcium silicate phases from first principles[J]. Chemistry of Materials, 2012, 24(7): 1262-1267. [27] WANG Q Q, LI F, SHEN X D, et al. Relation between reactivity and electronic structure for α'L-, β- and γ-dicalcium silicate: a first-principles study[J]. Cement and Concrete Research, 2014, 57: 28-32. [28] SHAHSAVARI R, CHEN L, TAO L. Edge dislocations in dicalcium silicates: experimental observations and atomistic analysis[J]. Cement and Concrete Research, 2016, 90: 80-88. [29] BRAND A S, GORHAM J M, BULLARD J W. Dissolution rate spectra of β-dicalcium silicate in water of varying activity[J]. Cement and Concrete Research, 2019, 118: 69-83. [30] TAYLOR H F W. Cement chemistry[M]. London: Thomas Telford Publishing, 1997. [31] TERMKHAJORNKIT P, VU Q H, BARBARULO R, et al. Dependence of compressive strength on phase assemblage in cement pastes: beyond gel-space ratio—experimental evidence and micromechanical modeling[J]. Cement and Concrete Research, 2014, 56: 1-11. [32] 王 晶, 文寨军, 隋同波, 等. 高贝利特水泥的性能及其水化机理的研究[J]. 建材发展导向, 2004(1): 45-49. WANG J, WEN Z J, SUI T B, et al. Study on properties and hydration mechanism of high belite cement[J]. Development Guide to Building Materials, 2004(1): 45-49 (in Chinese). [33] WANG L, DONG Y, ZHOU S H, et al. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials[J]. Energy and Buildings, 2018, 170: 157-169. [34] WANG L, YANG H Q, ZHOU S H, et al. Hydration, mechanical property and C-S-H structure of early-strength low-heat cement-based materials[J]. Materials Letters, 2018, 217: 151-154. [35] WANG L, YANG H Q, ZHOU S H, et al. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash[J]. Construction and Building Materials, 2018, 187: 1073-1091. [36] 郭随华, 林 震, 苏姣华, 等. 高贝利特硅酸盐水泥的水化和浆体结构[J]. 硅酸盐学报, 2000, 28(s1): 16-21. GUO S H, LIN Z, SU J H, et al. Hydration and paste structure of high belite Portland cement[J]. Journal of the Chinese Ceramic Society, 2000, 28(s1): 16-21 (in Chinese). [37] 王可良, 隋同波, 刘 玲, 等. 高贝利特水泥混凝土的抗拉性能[J]. 硅酸盐学报, 2014, 42(11): 1409-1413. WANG K L, SUI T B, LIU L, et al. Tensile properties of high belite cement concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(11): 1409-1413 (in Chinese). [38] EL-DIDAMONY H, SHARARA A M, HELMY I M, et al. Hydration characteristics of β-C2S in the presence of some accelerators[J]. Cement and Concrete Research, 1996, 26(8): 1179-1187. [39] SÁNCHEZ-HERRERO M J, FERNÁNDEZ-JIMÉNEZ A, PALOMO A. C3S and C2S hydration in the presence of Na2CO3 and Na2SO4[J]. Journal of the American Ceramic Society, 2017, 100(7): 3188-3198. [40] SÁNCHEZ-HERRERO M J, FERNÁNDEZ-JIMÉNEZ A, PALOMO Á. Alkaline hydration of C2S and C3S[J]. Journal of the American Ceramic Society, 2016, 99(2): 604-611. [41] 吴 蓬, 吕宪俊, 梁志强, 等. 混凝土早强剂的作用机理及应用现状[J]. 金属矿山, 2014(12): 20-25. WU P, LU X J, LIANG Z Q, et al. The mechanism and application of concrete hardening accelerator[J]. Metal Mine, 2014(12): 20-25 (in Chinese). [42] BOHÁČ M, STANĔK T, ZEZULOVÁ A, et al. Early hydration of activated belite-rich cement[J]. Advanced Materials Research, 2019, 1151: 23-27. [43] 邱 满, 管学茂, 刘松辉, 等. 碳化技术提升低热水泥的早期强度[J]. 硅酸盐通报, 2017, 36(10): 3265-3267+3272. QIU M, GUAN X M, LIU S H, et al. Lifting early strength of low heat cement with carbonation technology[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3265-3267+3272 (in Chinese). [44] SIDDIQUE S, NAQI A L, JANG J G. Influence of water to cement ratio on CO2 uptake capacity of belite-rich cement upon exposure to carbonation curing[J]. Cement and Concrete Composites, 2020, 111: 103616. [45] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement and Concrete Research, 2016, 82: 50-57. [46] SUI T B, FAN L, WEN Z J, et al. Properties of belite-rich Portland cement and concrete in China[J]. Journal of Civil Engineering and Architecture, 2015, 9(4): 384-392. [47] 樊启祥, 李文伟, 李新宇. 低热硅酸盐水泥大坝混凝土施工关键技术研究[J]. 水力发电学报, 2017, 36(4): 11-17. FAN Q X, LI W W, LI X Y. Key construction technologies of low heat Portland cement dam concrete[J]. Journal of Hydroelectric Engineering, 2017, 36(4): 11-17 (in Chinese). [48] 杨华全, 李文伟, 王迎春, 等. 低热硅酸盐水泥在三峡工程中的应用[J]. 人民长江, 2007, 38(1): 10-13. YANG H Q, LI W W, WANG Y C, et al. Application of low heat Portland cement in Three Gorges Project[J]. Yangtze River, 2007, 38(1): 10-13 (in Chinese). [49] SUI T B, FAN L, WEN Z J, et al. Study on the properties of high strength concrete using high belite cement[J]. Journal of Advanced Concrete Technology, 2004, 2(2): 201-206. [50] YAHIA A, TANIMURA M. Rheology of belite-cement—effect of w/c and high-range water-reducer type[J]. Construction and Building Materials, 2015, 88: 169-174. [51] GALLUCCI E, ZHANG X, SCRIVENER K L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H)[J]. Cement and Concrete Research, 2013, 53: 185-195. [52] NIU D T, ZHANG S H, WANG Y, et al. Effect of temperature on the strength, hydration products and microstructure of shotcrete blended with supplementary cementitious materials[J]. Construction and Building Materials, 2020, 264: 120234. [53] 王 晶, 郭随华, 隋同波, 等. 高贝利特水泥的高温强度特性研究[J]. 中国建材科技, 1999, 8(1): 8-13. WANG J, GUO S H, SUI T B, et al. Study on high temperature strength characteristics of high belite cement[J]. China Building Materials Science & Technology, 1999, 8(1): 8-13 (in Chinese). [54] SHIRANI S, CUESTA A, MORALES-CANTERO A, et al. Influence of curing temperature on belite cement hydration: a comparative study with Portland cement[J]. Cement and Concrete Research, 2021, 147: 106499. [55] MORALES-CANTERO A, DE LA TORRE A G, CUESTA A, et al. Belite hydration at high temperature and pressure by in situ synchrotron powder diffraction[J]. Construction and Building Materials, 2020, 262: 120825. [56] 郭传科, 王 毅, 任 超, 等. 白鹤滩大坝中热与低热水泥混凝土温控对比分析[J]. 水利水电快报, 2018, 39(8): 45-48. GUO C K, WANG Y, REN C, et al. Comparative analysis of temperature control of medium-heat and low-heat cement concrete in Baitan Dam[J]. Express Water Resources & Hydropower Information, 2018, 39(8): 45-48 (in Chinese). [57] WANG L, YANG H Q, DONG Y, et al. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials[J]. Journal of Cleaner Production, 2018, 203: 540-558. [58] 王鹏飞, 刘有志, 樊亦林, 等. 低热水泥混凝土在特高拱坝中应用的可行性分析[J]. 水利水电技术, 2018, 49(9): 191-198. WANG P F, LIU Y Z, FAN Y L, et al. Analysis on feasibility of application of low-heat cement concrete to construction of ultra-high arch dam[J]. Water Resources and Hydropower Engineering, 2018, 49(9): 191-198 (in Chinese). [59] 杨长辉, 王 川, 吴 芳. 混凝土塑性收缩裂缝成因及防裂措施研究综述[J]. 混凝土, 2002(5): 33-36+25. YANG C H, WANG C, WU F. A survey on the causes of formation of plastic shrinkage cracking and the investigations of prtective measures in concrete[J]. Concrete, 2002(5): 33-36+25 (in Chinese). [60] 林 鹏, 李 明, 刘 科, 等. 低热水泥碾压混凝土坝适应性智能通水策略研究[J]. 水利学报, 2022, 53(9): 1028-1038. LIN P, LI M, LIU K, et al. Study on adaptive intelligent water supply strategy of low heat RCC dam[J]. Journal of Hydraulic Engineering, 2022, 53(9): 1028-1038 (in Chinese). [61] 樊启祥, 张超然, 陈文斌, 等. 乌东德及白鹤滩特高拱坝智能建造关键技术[J]. 水力发电学报, 2019, 38(2): 22-35. FAN Q X, ZHANG C R, CHEN W B, et al. Key technologies of intelligent construction of Wudongde and Baihetan super high arch dams[J]. Journal of Hydroelectric Engineering, 2019, 38(2): 22-35 (in Chinese). [62] XIN J D, ZHANG G X, LIU Y, et al. Environmental impact and thermal cracking resistance of low heat cement (LHC) and moderate heat cement (MHC) concrete at early ages[J]. Journal of Building Engineering, 2020, 32: 101668. [63] 胡 昱, 牛旭婧, 杨 宁, 等. 低热水泥混凝土早期塑性开裂风险研究[J]. 混凝土, 2021(3): 19-22+26. HU Y, NIU X J, YANG N, et al. Study on the risk of early plastic cracking of low heat cement concrete[J]. Concrete, 2021(3): 19-22+26 (in Chinese). [64] 赵 平, 刘克忠, 隋同波, 等. 高贝利特水泥混凝土耐久性的评价[J]. 混凝土与水泥制品, 2000(6): 7-11. ZHAO P, LIU K Z, SUI T B, et al. Evaluation of durability for high belite cement concrete[J]. Chinal Concrete and Cement Products, 2000(6): 7-11 (in Chinese). [65] JIANG C M, JIANG L H, LI S X, et al. Impact of cation type and fly ash on deterioration process of high belite cement pastes exposed to sulfate attack[J]. Construction and Building Materials, 2021, 286: 122961. [66] WANG N, CHENG X, YANG Y. Seawater corrosion resistance of low heat Portland cement concrete[J]. Materials Science Forum, 2015, 814: 207-213. [67] HE Y J, LU L N, STRUBLE L J, et al. Effect of calcium-silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature[J]. Materials and Structures, 2014, 47(1): 311-322. [68] JIANG C M, JIANG L H, TANG X J, et al. Impact of calcium leaching on mechanical and physical behaviors of high belite cement pastes[J]. Construction and Building Materials, 2021, 286: 122983. [69] 范 磊. 高贝利特水泥高性能混凝土的研究[D]. 北京: 中国建筑材料科学研究院, 2003: 35-37. FAN L. Study on the preparation of HPC using high belite cement[D]. Beijing: China Building Materials Academy, 2003: 35-37 (in Chinese). [70] 张金山, 姚 燕, 王 昕, 等. 不同氯盐溶液中钙矾石与氯离子结合的研究[J]. 建筑材料学报, 2022, 25(3): 314-319. ZHANG J S, YAO Y, WANG X, et al. Combination of ettringite and chloride ion in different chloride solutions[J]. Journal of Building Materials, 2022, 25(3): 314-319 (in Chinese). [71] 黄 文. 海洋工程用低热硅酸盐水泥的研究[D]. 北京: 中国建筑材料科学研究总院, 2018: 23-25. HUANG W. Research of low heat Portland cement for marine engineering[D]. Beijing: China Building Materials Academy, 2018: 23-25 (in Chinese). [72] MATSUZAWA K, SHINSUGI M, ATARASHI D, et al. Hydration reaction and hydrated products of low heat Portland cement-expansive additive-CaO·2Al2O3 system with/without CaCl2[J]. Journal of the Ceramic Society of Japan, 2018, 126(5): 389-393. [73] SEO J, KIM S, JANG D, et al. Internal carbonation of belite-rich Portland cement: an in-depth observation at the interaction of the belite phase with sodium bicarbonate[J]. Journal of Building Engineering, 2021, 44: 102907. [74] HAUSMANN D A. A probability model of steel corrosion in concrete[J]. Materials Performance, 1998, 37(10): 64-68. [75] 濮 琦, 姚 燕, 王 玲, 等. 碳化混凝土中不同深度处pH值变化规律研究[J]. 新型建筑材料, 2017, 44(1): 1-4+33. PU Q, YAO Y, WANG L, et al. An investigation of the pH variation in carbonated concrete under different depth[J]. New Building Materials, 2017, 44(1): 1-4+33 (in Chinese). |
| [1] | WANG Hongzhen, SHEN Hao, CAO Wanzhi, GAN Jizhong, LI Wenqi, WANG Hairui, CHU Wenbin. Effect of Boric Acid on Properties of Sulphoaluminate Based Composite Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1166-1173. |
| [2] | LIANG Rui, KONG Sen, ZHANG Yan, LIU Jialong. Preparation of Colloidal of Nano-Silica with Comb-Like Structure Polymer and Its Effect on Performance Improvement of Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1183-1193. |
| [3] | WANG Jie, WANG Yong, WANG Yuqiang, WANG Caiping, YE Shengmao, GAO Peng. CBR Characteristics and Expansion Mechanism of Circulating Fluidized Bed Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1323-1332. |
| [4] | ZHANG Xianwei, GAO Yonghong, WANG Ping, LI Jiangshan, LIU Shiyu, LANG Lei, LEI Xuewen. Experimental Research on Synergistic Preparation of Road Base Material by Electrolytic Manganese Residue-Municipal Solid Waste Incineration Bottom Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1363-1373. |
| [5] | HUANG Lixiang, LIU Ze, YUAN Hang, WANG Dongmin, WEI Peng, JIANG Hongjian. Preparation and Properties of Autoclaved Aerated Concrete with Red Mud-Gypsum Composite Excitation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1393-1399. |
| [6] | CHEN Junsong, QIAO Min, WU Qingyong, LI Zhen, ZHAO Shuang. Effects and Mechanism Research of Different Chemical Activators on Activity of Recycled Fine Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1409-1417. |
| [7] | LI Xiangguo, ZHANG Cheng, LYU Yang, LI Shuguo, TIAN Bo, ZHANG Chenglong, KE Kai. Experimental Study on Durability of UHPC Prepared from Ceramic Polishing Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1418-1427. |
| [8] | DU Xiaowei, LIU Hui, LI Wenju, CAO Kai. Durability of Heat Activated Oil Shale Semi-Coke Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1428-1436. |
| [9] | LI Zhonghua, YAN Zhengguo, YANG Wengang, ZHENG Qi, YU Jingkun, YUAN Lei. Preparation and Properties of CaO-Y2O3 Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1506-1512. |
| [10] | ZHU Zhenzhong, LIU Yuanzhen, WANG Wenjing, WANG Xianxing, DUAN Pengfei. Experimental Study on Crack Resistance and Thermal Performance of Basalt Fiber Ceramsite Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 908-916. |
| [11] | FANG Yanfeng, WANG Songning, TONG Yu, SUN Xiaowei, DING Xiangqun, SU Wen. Effect of Carbonation Pretreatment on Volume Stability and Hydration Activity of Steel Slag-Cement Composite Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 1001-1007. |
| [12] | YE Fei, SHI Wenjie, WU Bo, TAN Gaoming, MA Xue. Effect of Borax/Triethanolamine Composited Retarder on Hydration and Hardening of Potassium Magnesium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 403-410. |
| [13] | DENG Mao, SHEN Bo, WU Hongmei, CHEN Song, HUANG Xiantao, XIE Qingqing. Effects of Limestone Powder Content and Particle Size on Hydration Heat of Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 420-428. |
| [14] | WANG Zhenjun, SHI Wentao, ZHANG Ting, LI Meng, WANG Zehui. Effect of PNIPAM Thermosensitive Gel on Sulfate Attack Resistance of Cement Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 429-438. |
| [15] | CHEN Wenyao, ZHANG Zhuoxiang, MENG Ercong, LI Qiang. Impermeability and Crack Resistance of Bentonite and Basalt Fiber Modified Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 439-447. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||