[1] LIN X Q, CHEN J, XU S X, et al. Solidification of heavy metals and PCDD/Fs from municipal solid waste incineration fly ash by the polymerization of calcium carbonate oligomers[J]. Chemosphere, 2022, 288: 132420. [2] CHEN Y C, CHEN F Y, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer[J]. Science of the Total Environment, 2022, 802: 149905. [3] ZHOU Y F, CAI G H, CHEESEMAN C, et al. Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments[J]. Journal of Environmental Management, 2022, 301: 113877. [4] SUN D D, TAY J H, CHEONG H K, et al. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix[J]. Journal of Hazardous Materials, 2001, 87(1/2/3): 213-223. [5] 杜永胜, 李保卫, 张雪峰, 等. 铁含量及价态对白云鄂博尾矿微晶玻璃析晶特性及性能的影响[J]. 人工晶体学报, 2013, 42(10): 2170-2176. DU Y S, LI B W, ZHANG X F, et al. Influence of content and valence of iron on crystallization characteristics and properties of Baiyunebo tailing glass-ceramics[J]. Journal of Synthetic Crystals, 2013, 42(10): 2170-2176 (in Chinese). [6] WEY M Y, LIU K Y, TSAI T H, et al. Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln[J]. Journal of Hazardous Materials, 2006, 137(2): 981-989. [7] ZHANG Y S, SUN W, CHEN Q L, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J]. Journal of Hazardous Materials, 2007, 143(1/2): 206-213. [8] NATH S K. Fly ash and zinc slag blended geopolymer: immobilization of hazardous materials and development of paving blocks[J]. Journal of Hazardous Materials, 2020, 387: 121673. [9] WONG G, GAN M, FAN X H, et al. Co-disposal of municipal solid waste incineration fly ash and bottom slag: a novel method of low temperature melting treatment[J]. Journal of Hazardous Materials, 2021, 408: 124438. [10] MA W C, SHI W B, SHI Y J, et al. Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash[J]. Journal of Hazardous Materials, 2021, 408: 124809. [11] 李保卫, 王 芳, 陈 华, 等. Cr2O3对白云鄂博西尾矿微晶玻璃显微结构及性能的影响[J]. 人工晶体学报, 2014, 43(3): 642-647. LI B W, WANG F, CHEN H, et al. Influence of Cr2O3 on the microstructure and properties of the glass-ceramics produced from Bayan Obo west mine tailing[J]. Journal of Synthetic Crystals, 2014, 43(3): 642-647 (in Chinese). [12] PAN D A, LI L L, WU Y F, et al. Characteristics and properties of glass-ceramics using lead fuming slag[J]. Journal of Cleaner Production, 2018, 175: 251-256. [13] LI B Q, GUO Y P, FANG J Z. Effect of crystallization temperature on glass-ceramics derived from tailings waste[J]. Journal of Alloys and Compounds, 2020, 838: 155503. [14] LAN J R, DONG Y Q, SUN Y, et al. A novel method for solidification/stabilization of Cd(II), Hg(II), Cu(II), and Zn(II) by activated electrolytic manganese slag[J]. Journal of Hazardous Materials, 2021, 409: 124933. [15] SHEN H L, LIU B, SHI Z S, et al. Reduction for heavy metals in pickling sludge with aluminum nitride in secondary aluminum dross by pyrometallurgy, followed by glass ceramics manufacture[J]. Journal of Hazardous Materials, 2021, 418: 126331. [16] LIU T Y, XIE Y X, GUO X G, et al. The role and stabilization behavior of heavy metal ions in eco-friendly porous semi-vitrified ceramics for construction application[J]. Journal of Cleaner Production, 2021, 292: 125855. [17] CASSINGHAM N J, STENNETT M C, BINGHAM P A, et al. The structural role of Zn in nuclear waste glasses[J]. International Journal of Applied Glass Science, 2011, 2(4): 343-353. [18] 李保卫, 杜永胜, 张雪峰, 等. 基础成分配比对白云鄂博尾矿微晶玻璃结构及性能的影响[J]. 人工晶体学报, 2012, 41(5): 1391-1398. LI B W, DU Y S, ZHANG X F, et al. Influence of basic composition ratio on structure and properties of slag glass-ceramics prepared by Baiyunebo tailing[J]. Journal of Synthetic Crystals, 2012, 41(5): 1391-1398 (in Chinese). [19] PIEKKARI K, OHENOJA K, ISTERI V, et al. Immobilization of heavy metals, selenate, and sulfate from a hazardous industrial side stream by using calcium sulfoaluminate-belite cement[J]. Journal of Cleaner Production, 2020, 258: 120560. [20] KRSTIC I, ZEC S, LAZAREVIC V, et al. Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure[J]. Science of Sintering, 2018, 50(2): 139-147. [21] CHEN G H. Effect of ZnO addition on properties of cordierite-based glass-ceramics[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(12): 1253-1257. [22] CHEN G H, LIU X Y. Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO[J]. Journal of Alloys and Compounds, 2007, 431(1/2): 282-286. [23] SHARIFIKOLOUEI E, BAINO F, GALLETTI C, et al. Adsorption of Pb and Cd in rice husk and their immobilization in porous glass-ceramic structures[J]. International Journal of Applied Ceramic Technology, 2020, 17(1): 105-112. [24] HAMMAD A H, ABDELGHANY A M, ELBATAL H A. Thermal, structural, and morphological investigations of modified bismuth silicate glass-ceramics[J]. Silicon, 2017, 9(2): 239-248. [25] PAN D A, LI L J, YANG J, et al. Production of glass-ceramics from heavy metal gypsum and pickling sludge[J]. International Journal of Environmental Science and Technology, 2015, 12(9): 3047-3052. [26] AZOOZ M A, OUIS M A, ELBATAL F H, et al. Crystallization behavior of glasses from the system CdO-B2O3 with varying CdO contents (30-90mol%)[J]. Journal of Molecular Structure, 2019, 1194: 256-261. [27] LIAO C Z, TANG Y Y, LIU C S, et al. Double-Barrier mechanism for chromium immobilization: a quantitative study of crystallization and leachability[J]. Journal of Hazardous Materials, 2016, 311: 246-253. |