[1] BALARAS C A, ARGIRIOU A A. Infrared thermography for building diagnostics[J]. Energy and Buildings, 2002, 34(2): 171-183. [2] CAMPBELL S D, BROCKER D E, NAGAR J, et al. SWaP reduction regimes in achromatic GRIN singlets[J]. Applied Optics, 2016, 55(13): 3594-3598. [3] MAMBOU S, MARESOVA P, KREJCAR O, et al. Breast cancer detection using infrared thermal imaging and a deep learning model[J]. Sensors, 2018, 18(9): 2799. [4] RING E J, AMMER K. Infrared thermal imaging in medicine[J]. Physiological Measurement, 2012, 33(3): R33-R46. [5] TEICHMAN J, HOLZER J, BALKO B, et al. Gradient index optics at DARPA [J]. Institute For Defense Analyses Alexandria Va, 2013. [6] CHOI J H, CHA D H, KIM J H, et al. Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses[J]. Journal of Materials Research, 2016, 31(12): 1674-1680. [7] GIBSON D, BAYYA S, NGUYEN V, et al. IR GRIN optics: design and fabrication[C]//SPIE Defense and Security. Proc SPIE 10181, Advanced Optics for Defense Applications: UV Through LWIR II, Anaheim, CA, USA. 2017, 10181: 60-68. [8] FOURMENTIN C, ZHANG X H, LAVANANT E, et al. IR GRIN lenses prepared by ionic exchange in chalcohalide glasses[J]. Scientific Reports, 2021, 11: 11081. [9] KANG M, SISKEN L, COOK J, et al. Refractive index patterning of infrared glass ceramics through laser-induced vitrification[J]. Optical Materials Express, 2018, 8(9): 2722. [10] RICHARDSON K A, KANG M, SISKEN L, et al. Advances in infrared gradient refractive index (GRIN) materials: a review[J]. Optical Engineering, 2020, 59(11): 112602. [11] SISKEN L, SMITH C, BUFF A, et al. Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications[J]. Optical Materials Express, 2017, 7(9): 3077. [12] KANG M, SISKEN L, LONERGAN C, et al. Monolithic chalcogenide optical nanocomposites enable infrared system innovation: gradient refractive index optics[J]. Advanced Optical Materials, 2020, 8(10): 2000150. [13] SISKEN L, KANG M, VERAS J M, et al. Infrared glass-ceramics with multidispersion and gradient refractive index attributes[J]. Advanced Functional Materials, 2019, 29(35): 1902217. [14] LI C K, LIU H J, ZHOU G J, et al. Infrared GRIN GeS2-Sb2S3-CsCl chalcogenide glass-ceramics[J]. Journal of the American Ceramic Society, 2022, 105(10): 6007-6012. [15] LAVANANT E, CALVEZ L, CHEVIRÉ F, et al. Radial gradient refractive index (GRIN) infrared lens based on spatially resolved crystallization of chalcogenide glass[J]. Optical Materials Express, 2020, 10(4): 860. [16] LI Z B, LIN C G, NIE Q H, et al. Controlled crystallization of β-In2S3 in 65GeS2·25In2S3·10CsCl chalcohalide glass[J]. Applied Physics A, 2013, 112(4): 939-946. [17] CALVEZ L. Transparent chalcogenide glass-ceramics[M]//Chalcogenide Glasses. Amsterdam: Elsevier, 2014: 310-343. [18] YE Q L, WENG K B, GUAN S S, et al. Unveiling crystallization mechanism for controlling nanocrystalline structure in glasses[J]. Journal of the European Ceramic Society, 2020, 40(5): 2173-2178. [19] XIANG W D, ZHAO H J, ZHONG J S, et al. Synthesis and third-order optical nonlinearities of In2S3 quantum dots glass[J]. Journal of Alloys and Compounds, 2013, 553: 135-141. [20] SHIRYAEV V, CHURBANOV M. Preparation of high-purity chalcogenide glasses[M]//Chalcogenide Glasses. Russian: Elsevier, 2014: 3-35. |