[1] NARAYANAN N, RAMAMURTHY K. Structure and properties of aerated concrete: a review[J]. Cement and Concrete Composites, 2000, 22(5): 321-329. [2] IKPONMWOSA E, FALADE F, FAPOHUNDA C. A review and investigations of some properties of foamed aerated concrete[J]. Nigerian Journal of Technology, 2014, 33(1): 1-9. [3] 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). [4] 刘 超, 罗健林, 李秋义, 等. 泡沫混凝土的生产现状及未来发展趋势[J]. 现代化工, 2018, 38(9): 10-14+16. LIU C, LUO J L, LI Q Y, et al. Outlook and review in foam concrete production[J]. Modern Chemical Industry, 2018, 38(9): 10-14+16 (in Chinese). [5] 雷东移, 郭丽萍, 刘加平, 等. 泡沫混凝土的研究与应用现状[J]. 功能材料, 2017, 48(11): 11037-11042+11053. LEI D Y, GUO L P, LIU J P, et al. State of study and application of foamed concrete[J]. Journal of Functional Materials, 2017, 48(11): 11037-11042+11053 (in Chinese). [6] YAN Z, DA C, Y C L, et al. Study on engineering properties of foam concrete containing waste seashell[J]. Construction and Building Materials, 2020, 260: 119896. [7] OREN O H, GHOLAMPOUR A, GENCEL O, et al. Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate[J]. Construction and Building Materials, 2020, 238: 117774. [8] JHATIAL A A, GOH W I, SOHU S, et al. Preliminary investigation of thermal behavior of lightweight foamed concrete incorporating palm oil fuel ash and eggshell powder[J]. Periodica Polytechnica Civil Engineering, 2020, 65(1): 168-180. [9] ALI KHAWAJA S, JAVED U, ZAFAR T, et al. Eco-friendly incorporation of sugarcane bagasse ash as partial replacement of sand in foam concrete[J]. Cleaner Engineering and Technology, 2021, 4: 100164. [10] 吕绍伟, 姜 屏, 钱 彪, 等. 铁尾矿砂力学特性及再生利用研究进展[J]. 硅酸盐通报, 2020, 39(2): 466-470+512. LYU S W, JIANG P, QIAN B, et al. Research progress on mechanical properties and recycling of iron tailings sand[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 466-470+512 (in Chinese). [11] 惠 婧, 谢 群, 陈 涛, 等. 铁尾矿砂混凝土基本性能研究进展[J]. 新型建筑材料, 2023, 50(1): 1-7+51. HUI J, XIE Q, CHEN T, et al. Research progress on basic properties of iron tailings sand concrete[J]. New Building Materials, 2023, 50(1): 1-7+51 (in Chinese). [12] 陈东平, 刘 芳, 齐艳涛. 铁尾矿在水泥基材料中的再利用研究进展[J]. 环境工程, 2015, 33(8): 83-86. CHEN D P, LIU F, QI Y T. Research progress in development of utilization of iron tailings in cementitious materials[J]. Environmental Engineering, 2015, 33(8): 83-86 (in Chinese). [13] HOU Y F. Comparison of effect of iron tailing sand and natural sand on concrete properties[J]. Key Engineering Materials, 2014, 599: 11-14. [14] ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021, 286: 122968. [15] 张玉琢, 马 洁, 刘海卿. 铁尾矿砂混凝土路用性能试验研究[J]. 混凝土, 2018(12): 157-160. ZHANG Y Z, MA J, LIU H Q. Experimental research on iron tailings as concrete fine aggregate in highway[J]. Concrete, 2018(12): 157-160 (in Chinese). [16] 赵 苏, 温 煦, 丁向群, 等. 铁尾矿粉泡沫混凝土收缩性能的研究[J]. 混凝土, 2017(8): 59-61+65. ZHAO S, WEN X, DING X Q, et al. Shrinkage performance of foamed concrete with iron ore tailings[J]. Concrete, 2017(8): 59-61+65 (in Chinese). [17] 王建辉, 孟祥荫, 李 涛, 等. 干湿循环下铁尾矿砂再生混凝土耐久性研究[J]. 混凝土, 2020(4): 64-66+69. WANG J H, MENG X Y, LI T, et al. Durability of recycled concrete with iron tailings sand under dry-wet cycling[J]. Concrete, 2020(4): 64-66+69 (in Chinese). [18] ZHU Q, YUAN Y X, CHEN J H, et al. Research on the high-temperature resistance of recycled aggregate concrete with iron tailing sand[J]. Construction and Building Materials, 2022, 327: 126889. [19] 刘 辉. 硫酸盐侵蚀与冻融循环双重因素对混凝土耐久性的影响[D]. 成都: 西南交通大学, 2013. LIU H. Influence of sulfate attack and freeze-thaw cycle on concrete durability[D]. Chengdu: Southwest Jiaotong University, 2013 (in Chinese). [20] 史 波, 何 旺. 铁尾矿砂超高性能混凝土的冻融循环耐久性分析[J]. 金属矿山, 2022(12): 65-69. SHI B, HE W. Durability analysis of freeze-thaw cycle of iron tailings ultra-high performance concrete[J]. Metal Mine, 2022(12): 65-69 (in Chinese). [21] RANJANI S I, RAMAMURTHY K. Behaviour of foam concrete under sulphate environments[J]. Cement and Concrete Composites, 2012, 34(7): 825-834. [22] LI J Z, HUANG H X, WANG W J, et al. Compressive properties and anti-erosion characteristics of foam concrete in road engineering[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 022066. [23] 冯扣宝, 王路明, 蒋 蕾, 等. 超轻水泥基发泡混凝土抗冻融性能试验研究[J]. 混凝土, 2015(12): 38-42. FENG K B, WANG L M, JIANG L, et al. Experimental study on the performance of freezing-thawing resistance of ultralight foam concrete[J]. Concrete, 2015(12): 38-42 (in Chinese). [24] 秦 毅. 铁尾矿砂对泡沫混凝土力学性质和微观结构的影响[J]. 中国测试, 2022, 48(6): 134-142. QIN Y. Effect of iron tailings sand on the mechanical properties and microstructure of foam concrete[J]. China Measurement & Test, 2022, 48(6): 134-142 (in Chinese). [25] SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72-79. [26] 刘润清, 欧阳鹏, 杨元全, 等. 双氧水发泡泡沫混凝土抗冻性与气孔特征的关系[J]. 硅酸盐学报, 2014, 42(8): 1055-1063+1069. LIU R Q, OUYANG P, YANG Y Q, et al. Relationship between freeze-thaw resistance and air-void characteristics of foam concrete with hydrogen peroxide as foaming agent[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 1055-1063+1069 (in Chinese). [27] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1): 93-98. PANG C M, WANG S H. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1): 93-98 (in Chinese). [28] 方永浩, 王 锐, 庞二波, 等. 水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报, 2010, 38(4): 621-626. FANG Y H, WANG R, PANG E B, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 621-626 (in Chinese). [29] 刘 鑫, 倪铖伟, 孙东宁, 等. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071. LIU X, NI C W, SUN D N, et al. Study on deterioration mechanism of lightweight cellular concrete with initial damage under wetting-drying cycles[J]. Materials Reports, 2021, 35(14): 14065-14071 (in Chinese). [30] 魏婉梦. 基于Wiener退化过程的剩余寿命估计[D]. 南京: 东南大学, 2018: 28-32. WEI W M. Residual life estimation based on Wiener degeneration process[D]. Nanjing: Southeast University, 2018: 28-32 (in Chinese). |