[1] 孙传尧, 宋振国, 朱阳戈, 等. 中国铜铝铅锌矿产资源开发利用现状及安全供应战略研究[J]. 中国工程科学, 2019, 21(1): 133-139. SUN C Y, SONG Z G, ZHU Y G, et al. Exploitation and utilization status and safe supply strategy of copper, aluminum, lead, and zinc resources in China[J]. Strategic Study of CAE, 2019, 21(1): 133-139 (in Chinese). [2] 薛兴勇, 韩要丛, 苏俏俏, 等. 铜渣基磷酸盐胶凝材料的力学性能与微观结构[J]. 硅酸盐通报, 2023, 42(5): 1750-1757. XUE X Y, HAN Y C, SU Q Q, et al. Mechanical properties and microstructure of copper slag-based phosphate cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1750-1757 (in Chinese). [3] DENG D Q, LIU L, YAO Z L, et al. A practice of ultra-fine tailings disposal as filling material in a gold mine[J]. Journal of Environmental Management, 2017, 196: 100-109. [4] 李伟光, 杨 航, 李崇智, 等. 铅锌冶炼废水中和渣制备免烧免蒸砖试验研究[J]. 中国矿业, 2017, 26(增刊2): 141-146. LI W G, YANG H, LI C Z, et al. Experimental study on preparation of unburned and non autoclaved brick from neutralization slag of lead zinc smelting wastewater[J]. China Mining Magazine, 2017, 26(supplement 2): 141-146 (in Chinese). [5] 林秀培. 矿坑水中和渣的资源化利用[J]. 工程建设, 2019, 51(8): 92-94. LIN X P. Resource utilization of neutralization sludge derived from mine wastewater[J]. Engineering Construction, 2019, 51(8): 92-94 (in Chinese). [6] WANG C, LI Z F, ZHOU Z H, et al. Compatibility of different fibres with red mud-based geopolymer grouts[J]. Construction and Building Materials, 2022, 315: 125742. [7] LUO Q, LIU Y T, DONG B Q, et al. Lithium slag-based geopolymer synthesized with hybrid solid activators[J]. Construction and Building Materials, 2023, 365: 130070. [8] KIRUBAJINY P, SAYANTHAN R, JAY S. Formulating eco-friendly geopolymer foam concrete by alkali-activation of ground brick waste[J]. Journal of Cleaner Production, 2021, 325: 129180. [9] LI Y L, YIN J, YUAN Q, et al. Greener strain-hardening cementitious composites (SHCC) with a novel alkali-activated cement[J]. Cement and Concrete Composites, 2022, 134: 104735. [10] 彭 佳, 颜子博. 地质聚合物的研究进展[J]. 中国非金属矿工业导刊, 2014(1): 16-19. PENG J, YAN Z B. Recent research progress of geopolymer[J]. China Non-Metallic Minerals Industry, 2014(1): 16-19 (in Chinese). [11] 高铭洁, 户 国, 吴 俊, 等. 固体硅酸钠激发粉煤灰-矿渣基地质聚合物抗压强度的试验研究[J]. 特种结构, 2023, 40(2): 100-105. GAO M J, HU G, WU J, et al. Experimental study on the compressive strength of slag-fly ash based geopolymer activated by solid sodium silicate[J]. Special Structures, 2023, 40(2): 100-105 (in Chinese). [12] ZHANG B F, YU T, DENG L L, et al. Ion-adsorption type rare earth tailings for preparation of alkali-based geopolymer with capacity for heavy metals immobilization[J]. Cement and Concrete Composites, 2022, 134: 104768. [13] 余润翔, 张 彤, 杨 岩, 等. 煤气化粗渣-粉煤灰基地质聚合物的制备与性能[J]. 硅酸盐通报, 2022, 41(12): 4318-4323. YU R X, ZHANG T, YANG Y, et al. Preparation and properties of coal gasification coarse slag-fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4318-4323 (in Chinese). [14] WANG Y, ZHONG H, ZHANG M Z. Experimental study on static and dynamic properties of fly ash-slag based strain hardening geopolymer composites[J]. Cement and Concrete Composites, 2022, 129: 104481. [15] 杨 光, 赵 宇, 朱伶俐, 等. 碱激发偏高岭土基地质聚合物的制备及抗压强度研究[J]. 硅酸盐通报, 2022, 41(3): 894-902. YANG G, ZHAO Y, ZHU L L, et al. Preparation and compressive strength of geopolymer based on alkali activated metakaolin[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 894-902 (in Chinese). [16] LI M S, LUO R, QIN L L, et al. High temperature properties of graphene oxide modified metakaolin based geopolymer paste[J]. Cement and Concrete Composites, 2022, 125: 104318. [17] WONGSA A, BOONSERM K, WAISURASINGHA C, et al. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix[J]. Journal of Cleaner Production, 2017, 148: 49-59. [18] WANG Y G, LIU X M, ZHANG W, et al. Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer[J]. Journal of Cleaner Production, 2020, 244: 118852. [19] LIU Q, LI X C, CUI M Y, et al. Preparation of eco-friendly one-part geopolymers from gold mine tailings by alkaline hydrothermal activation[J]. Journal of Cleaner Production, 2021, 298: 126806. [20] LI J, LIU Y C, KE X, et al. Geopolymer synthesized from electrolytic manganese residue and lead-zinc smelting slag: compressive strength and heavy metal immobilization[J]. Cement and Concrete Composites, 2022, 134: 104806. [21] PUERTAS F, PALACIOS M, MANZANO H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements[J]. Journal of the European Ceramic Society, 2011, 31(12): 2043-2056. [22] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. [23] PUERTAS F, MARTÍNEZ-RAMÍREZ S, ALONSO S, et al. Alkali-activated fly ash/slag cements[J]. Cement and Concrete Research, 2000, 30(10): 1625-1632. [24] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [25] KAN L L, WANG W S, LIU W D, et al. Development and characterization of fly ash based PVA fiber reinforced engineered geopolymer composites incorporating metakaolin[J]. Cement and Concrete Composites, 2020, 108: 103521. [26] XIANG J C, LIU L P, HE Y, et al. Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water[J]. Cement and Concrete Composites, 2019, 99: 140-150. [27] TSUCHIAI H, ISHIZUKA T, UENO T, et al. Highly active absorbent for SO2 removal prepared from coal fly ash[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1404-1411. [28] SUN Z Q, VOLLPRACHT A. Isothermal calorimetry and in situ XRD study of the NaOH activated fly ash, metakaolin and slag[J]. Cement and Concrete Research, 2018, 103: 110-122. [29] MAHMOOD A H, BABAEE M, FOSTER S J, et al. Capturing the early-age physicochemical transformations of alkali-activated fly ash and slag using ultrasonic pulse velocity technique[J]. Cement and Concrete Composites, 2022, 130: 104529. [30] ZHU X Y, LU C H, LI W K, et al. Effects of carbon nanofibers on hydration and geopolymerization of low and high-calcium geopolymers[J]. Cement and Concrete Composites, 2022, 133: 104695. [31] KAPELUSZNA E, KOTWICA Ł, RÓŻYCKA A, et al. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis[J]. Construction and Building Materials, 2017, 155: 643-653. [32] LI Y D, LI J F, CUI J, et al. Experimental study on calcium carbide residue as a combined activator for coal gangue geopolymer and feasibility for soil stabilization[J]. Construction and Building Materials, 2021, 312: 125465. [33] HAN Y M, XIA J W, CHANG H F, et al. The influence mechanism of ettringite crystals and microstructure characteristics on the strength of calcium-based stabilized soil[J]. Materials, 2021, 14(6): 1359. [34] 刘 洋, 吴锦绣, 封春甫, 等. 富镁镍渣-粉煤灰基地质聚合物的制备与性能表征[J]. 硅酸盐通报, 2021, 40(3): 921-928. LIU Y, WU J X, FENG C F, et al. Preparation and performance characterization of magnesium-rich nickel slag-fly ash-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 921-928 (in Chinese). [35] GARCÍA L I, MACPHEE D E, PALOMO A, et al. Effect of alkalis on fresh C-S-H gels. FTIR analysis[J]. Cement and Concrete Research, 2009, 39(3): 147-153. [36] HE J, JIE Y X, ZHANG J H, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites[J]. Cement and Concrete Composites, 2013, 37: 108-118. |