[1] SHEN W G, LIU Y, YAN B L, et al. Cement industry of China: driving force, environment impact and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 618-628. [2] 王东星, 何福金. CO2碳化-矿渣/粉煤灰协同固化土效果与机制研究[J]. 岩石力学与工程学报, 2020, 39(7): 1493-1502. WANG D X, HE F J. Investigation on performance and mechanism of CO2 carbonated slag/fly ash solidified soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1493-1502 (in Chinese). [3] 章定文, 曹智国. 工业废渣加固土强度特性[J]. 岩土力学, 2013, 34(增刊1): 54-59. ZHANG D W, CAO Z G. Strength characteristics of stabilized soils using industrial by-product binders[J]. Rock and Soil Mechanics, 2013, 34(supplement 1): 54-59 (in Chinese). [4] JAWAD Z F, GHAYYIB R J, SALMAN A J. Microstructural and compressive strength analysis for cement mortar with industrial waste materials[J]. Civil Engineering Journal, 2020, 6(5): 1007-1016. [5] 阮竹恩,武鹏杰,吴爱祥,等. 矿用精炼渣基早强胶凝材料配比优化与水化机理[J/OL].中国有色金属学报: 1-17 [2023-10-20]. http://kns.cnki.net/kcms/detail/43.1238.TG.20221102.1656.003.html. RUAN Z E, WU P J, WU A X, et al. Ratio Optimization and hydration mechanism of mine refining slag-based early strength cementitious materials[J/OL]. The Chinese Journal of Nonferrous Metals: 1-17 [2023-10-20]. http://kns.cnki.net/kcms/detail/43.1238.TG.20221102.1656.003.html (in Chinese). [6] 简文彬, 张 登, 黄春香. 水泥-水玻璃固化软土的微观机理研究[J]. 岩土工程学报, 2013, 35(增刊2): 632-637. JIAN W B, ZHANG D, HUANG C X. Micromechanism of cement-sodium silicate-stabilized soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(supplement 2): 632-637 (in Chinese). [7] KHAN A, DO J, KIM D. Experimental optimization of high-strength self-compacting concrete based on d-optimal design[J]. Journal of Construction Engineering and Management, 2017, 143(4). [8] 王子帅, 王东星. 工业废渣-水泥协同固化土抗硫酸盐侵蚀性能[J]. 岩土工程学报, 2022, 44(11): 2035-2042. WANG Z S, WANG D X. Sulfate resistance of industrial waste residue-cement synergistic solidified soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042 (in Chinese). [9] 贾兴文, 吴 洲, 马 英. 磷石膏建材资源化利用现状[J]. 材料导报, 2013, 27(23): 139-141+146. JIA X W, WU Z, MA Y. Present status of phosphogypsum utilization in building materials[J]. Materials Review, 2013, 27(23): 139-141+146 (in Chinese). [10] 丁建文, 张 帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9): 2817-2822. DING J W, ZHANG S, HONG Z S, et al. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31(9): 2817-2822 (in Chinese). [11] JIANG G Z, WU A X, WANG Y M, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: used as binder to prepare filling material[J]. Construction and Building Materials, 2018, 167: 263-270. [12] CHEN X M, GAO J M, LIU C B, et al. Effect of neutralization on the setting and hardening characters of hemihydrate phosphogypsum plaster[J]. Construction and Building Materials, 2018, 190: 53-64. [13] JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294. [14] YI Y L, LISKA M, JIN F, et al. Mechanism of reactive magnesia-ground granulated blastfurnace slag (GGBS) soil stabilization[J]. Canadian Geotechnical Journal, 2016, 53(5): 773-782. [15] HIGGINS D. Briefing: GGBS and sustainability[J]. Proceedings of the institution of civil engineers-construction materials, 2007, 160(3): 99-101. [16] 易耀林, 卿学文, 庄 焱, 等. 粒化高炉矿渣微粉在软土固化中的应用及其加固机理[J]. 岩土工程学报, 2013, 35(增刊2): 829-833. YI Y L, QING X W, ZHUANG Y, et al. Utilization of GGBS in stabilization of soft soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(supplement 2): 829-833 (in Chinese). [17] 刘诚斌, 纪洪广, 刘娟红, 等. 矿渣复合胶凝材料固化滨海盐渍土的试验研究[J]. 建筑材料学报, 2015, 18(1): 82-87. LIU C B, JI H G, LIU J H, et al. Experimental study on slag composite cementitious material for solidifying coastal saline soil[J]. Journal of Building Materials, 2015, 18(1): 82-87 (in Chinese). [18] 陈 鑫, 俞 峰, 洪哲明, 等. 新型GS固化土与水泥土的力学特性对比研究[J]. 工程地质学报, 2022, 30(4): 1111-1121. CHEN X, YU F, HONG Z M, et al. Comparative study on mechanical properties of new GS solidified soil and cement-soil[J]. Journal of Engineering Geology, 2022, 30(4): 1111-1121 (in Chinese). [19] 国家市场监督管理总局, 国家标准化管理委员会. 磷石膏: GB/T 23456—2018[S]. 北京: 中国标准出版社, 2018. State Administration of Market Supervision, National Standardization Management Committee. Phosphogypsum: GB/T 23456—2018[S]. Beijing: China Standards Press, 2018 (in Chinese). [20] SCHEFFÉ H. Experiments with mixtures[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1958, 20(2): 344-360. [21] DE AGUIAR P F, BOURGUIGNON B, KHOTS M S, et al. D-optimal designs[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(2): 199-210. [22] JEIRANI Z, MOHAMED JAN B, SI ALI B, et al. The optimal mixture design of experiments: alternative method in optimizing the aqueous phase composition of a microemulsion[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 112: 1-7. [23] CHEN X, YU F, HONG Z M, et al. Comparative investigation on the curing behavior of GS-stabilized and cemented soils at macromechanical and microstructural scales[J]. Journal of Testing and Evaluation, 2022, 50(6): 20200631. [24] SUN Y, YU R, WANG S Y, et al. Development of a novel eco-efficient LC2 conceptual cement based ultra-high performance concrete (UHPC) incorporating limestone powder and calcined clay tailings: design and performances[J]. Journal of Cleaner Production, 2021, 315: 128236. [25] ABDULYEKEEN K A, UNIVERSITY A T B, IBRAHIM A A, et al. D-optimal design application to study enhanced biostimulation of used motor oil contaminated soil[J]. Path of Science, 2019, 5(5): 1001-1008. [26] 孔祥明, 卢子臣, 张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2): 274-281. KONG X M, LU Z C, ZHANG C Y. Recent development on understanding cement hydration mechanism and effects of chemical admixtures on cement hydration[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 274-281 (in Chinese). [27] 王 冲, 杨长辉, 钱觉时, 等. 粉煤灰与矿渣的早期火山灰反应放热行为及其机理[J]. 硅酸盐学报, 2012, 40(7): 1050-1058. WANG C, YANG C H, QIAN J S, et al. Behavior and mechanism of pozzolanic reaction heat of fly ash and ground granulated blastfurnace slag at early age[J]. Journal of the Chinese Ceramic Society, 2012, 40(7): 1050-1058 (in Chinese). [28] 赵 耀. 矿渣微粉掺料的路用性能研究[J]. 工程建设与设计, 2017(16): 69-70. ZHAO Y. Study on road performance of slag powder addition[J]. Construction & Design for Engineering, 2017(16): 69-70 (in Chinese). [29] DAMINELI B L, KEMEID F M, AGUIAR P S, et al. Measuring the eco-efficiency of cement use[J]. Cement and Concrete Composites, 2010, 32(8): 555-562. [30] 国家市场监督管理总局, 国家标准化管理委员会. 水泥单位产品能源消耗限额: GB 16780—2021[S]. 北京: 中国标准出版社, 2021. State Administration for Market Supervision and Administration, National Standardization Management Committee. Cement unit product energy consumption limit: GB 16780—2021[S]. Beijing : China Standards Publishing House, 2021 (in Chinese). [31] 狄东仁, 韩仲琦. 水泥熟料CO2排放量的简捷计算法[J]. 水泥技术, 2015(3): 21-23. DI D R, HAN Z Q. Simple calculation method of CO2 emissions of cement clinker[J]. Cement Technology, 2015(3): 21-23 (in Chinese). |