[1] RAVI R, VICTOR C L, MICHAEL D S, et al. Micromechanics of high-strength, high-ductility concrete[J]. ACI Materials Journal, 2013, 110(4): 375-384. [2] 夏超凡. 高强度、高延性水泥基复合材料(HSHDCC)的动态性能研究[D]. 无锡: 江南大学, 2021. XIA C F. Study on dynamic properties of high strength and high ductility cement-based composites (HSHDCC)[D]. Wuxi: Jiangnan University, 2021 (in Chinese). [3] 吴立山, 余志辉, 袁 振, 等. 高强度高延性水泥基复合材料的弯曲性能[J]. 功能材料, 2021, 52(12): 12159-12164. WU L S, YU Z H, YUAN Z, et al. Flexural properties of high strength high ductility cementitious composite[J]. Journal of Functional Materials, 2021, 52(12): 12159-12164 (in Chinese). [4] 汪智勇, 张文生, 叶家元. 高强水泥基材料研究进展[J]. 硅酸盐通报, 2009, 28(4): 761-765+770. WANG Z Y, ZHANG W S, YE J Y. Research progress in high strength cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(4): 761-765+770 (in Chinese). [5] KUNIEDA M, HUSSEIN M, UEDA N, et al. Enhancement of crack distribution of UHP-SHCC under axial tension using steel reinforcement[J]. Journal of Advanced Concrete Technology, 2010, 8(1): 49-57. [6] 蔡新江, 戴朝炜, 邵永健, 等. 再生玻璃作为辅助胶凝材料制备ECC的力学及变形性能[J]. 硅酸盐通报, 2020, 39(9): 2739-2744. CAI X J, DAI C W, SHAO Y J, et al. Mechanical and deformation properties of engineered cementitious composites containing recycled glass as supplementary cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2739-2744 (in Chinese). [7] 陈 宇, 林熙杰, 李长辉, 等. 抗收缩工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2023, 42(5): 1599-1607. CHEN Y, LIN X J, LI C H, et al. Mechanical performance of anti-shrink engineering cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1599-1607 (in Chinese). [8] 王振波, 郝如升, 李鹏飞, 等. 海水珊瑚砂ECC的力学性能与裂纹宽度控制[J]. 复合材料学报, 2023, 40(4): 2261-2272. WANG Z B, HAO R S, LI P F, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272 (in Chinese). [9] DAVIDOVITS J. Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement[J]. Journal of Materials Education, 1994, 16(2/3): 91-139. [10] MESGARI S, AKBARNEZHAD A, XIAO J Z. Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: effects on mechanical properties[J]. Construction and Building Materials, 2020, 236: 117571. [11] PEYNE J, GAUTRON J, DOUDEAU J, et al. Development of low temperature lightweight geopolymer aggregate, from industrial waste, in comparison with high temperature processed aggregates[J]. Journal of Cleaner Production, 2018, 189: 47-58. [12] XU L Y, HUANG B T, DAI J G. Development of engineered cementitious composites (ECC) using artificial fine aggregates[J]. Construction and Building Materials, 2021, 305: 124742. [13] XU L Y, HUANG B T, QIAN L P, et al. Enhancing long-term tensile performance of engineered cementitious composites (ECC) using sustainable artificial geopolymer aggregates[J]. Cement and Concrete Composites, 2022, 133: 104676. [14] XU L Y, HUANG B T, LI V C, et al. High-strength high-ductility engineered/strain-hardening cementitious composites (ECC/SHCC) incorporating geopolymer fine aggregates[J]. Cement and Concrete Composites, 2022, 125: 104296. [15] XU L Y, QIAN L P, HUANG B T, et al. Development of artificial one-part geopolymer lightweight aggregates by crushing technique[J]. Journal of Cleaner Production, 2021, 315: 128200. [16] 朱 超, 刘笑歌, 林 鑫, 等. 基于紧密堆积理论的风积沙-再生复合微粉UHPC配合比设计及验证[J]. 福州大学学报(自然科学版), 2023, 51(2): 243-249. ZHU C, LIU X G, LIN X, et al. Design and validation of UHPC mix ratio incorporating aeolian sand and recycled mixed powders based on the dense packing theory[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(2): 243-249 (in Chinese). [17] 王玉军, 翟爱良, 高 涛, 等. 再生砖骨料多孔混凝土强度和透水性能研究[J]. 混凝土, 2016(2): 90-95+98. WANG Y J, ZHAI A L, GAO T, et al. Experimental studies on strength and water permeability of recycled brick aggregate porous concrete[J]. Concrete, 2016(2): 90-95+98 (in Chinese). [18] 张倩倩, 刘建忠, 周华新, 等. 超高性能混凝土流变特性及其对纤维分散性的影响[J]. 材料导报, 2017, 31(23): 73-77. ZHANG Q Q, LIU J Z, ZHOU H X, et al. Rheological properties of ultra-high performance concrete and its effect on the fiber dispersion within the material[J]. Materials Review, 2017, 31(23): 73-77 (in Chinese). [19] AGUIRRE-GUERRERO A M, ROBAYO-SALAZAR R A, DE GUTIÉRREZ R M. A novel geopolymer application: coatings to protect reinforced concrete against corrosion[J]. Applied Clay Science, 2017, 135: 437-446. [20] CASTRO J, KEISER L, GOLIAS M, et al. Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures[J]. Cement and Concrete Composites, 2011, 33(10): 1001-1008. [21] 陈惠苏, 孙 伟, PIET S. 水泥基复合材料集料与浆体界面研究综述(二): 界面微观结构的形成、劣化机理及其影响因素[J]. 硅酸盐学报, 2004, 32(1): 70-79. CHEN H S, SUN W, PIET S. Interfacial transition zone between aggregate and paste in cementitious composites (II): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors[J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 70-79 (in Chinese). |