[1] 王俊岭, 王雪明, 冯萃敏, 等. 植生混凝土的研究进展[J]. 硅酸盐通报, 2015, 34(7): 1915-1920. WANG J L, WANG X M, FENG C M, et al. Research progress on the planting eco-concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(7): 1915-1920 (in Chinese). [2] 乔建刚, 董进国, 李明浩, 等. 生态混凝土植生与抗冲刷性能研究[J]. 硅酸盐通报, 2023, 42(3): 917-924. QIAO J G, DONG J G, LI M H, et al. Study on planting performance and scouring resistance of eco-concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 917-924 (in Chinese). [3] TANG W, MOHSENI E, WANG Z Y. Development of vegetation concrete technology for slope protection and greening[J]. Construction and Building Materials, 2018, 179: 605-613. [4] CALVO J L G, HIDALGO A, ALONSO C, et al. Development of low-pH cementitious materials for HLRW repositories[J]. Cement and Concrete Research, 2010, 40(8): 1290-1297. [5] FAIZ H, NG S, RAHMAN M. A state-of-the-art review on the advancement of sustainable vegetation concrete in slope stability[J]. Construction and Building Materials, 2022, 326: 126502. [6] KONG J F, WANG Z H, MENG X B, et al. Study on alkali reduction treatments and plant growth properties of planting concrete[J]. Sustainability, 2022, 14(19): 12228. [7] GANAPATHY G P, ALAGU A, RAMACHANDRAN S, et al. Effects of fly ash and silica fume on alkalinity, strength and planting characteristics of vegetation porous concrete[J]. Journal of Materials Research and Technology, 2023, 24: 5347-5360. [8] BAO X H, LIAO W Y, DONG Z J, et al. Development of vegetation-pervious concrete in grid beam system for soil slope protection[J]. Materials, 2017, 10(2): 96. [9] LEE K H, YANG K H. Development of a neutral cementitious material to promote vegetation concrete[J]. Construction and Building Materials, 2016, 127: 442-449. [10] GONG C C, ZHOU X M, DAI W Y, et al. Effects of carbamide on fluidity and setting time of sulphoaluminate cement and properties of planting concrete from sulphoaluminate cement[J]. Construction and Building Materials, 2018, 182: 290-297. [11] 杨永民, 何永刚, 刘晓飞, 等. 多孔生态混凝土孔隙水环境碱性降低措施研究[J]. 广东水利水电, 2018(11): 106-109. YANG Y M, HE Y G, LIU X F, et al. Study on alkaline reduction measures of pore water environment in porous ecological concrete[J]. Guangdong Water Resources and Hydropower, 2018(11): 106-109 (in Chinese). [12] 丁向群, 尹思安, 孙 畅, 等. 超细矿粉对植生再生混凝土抗压强度及pH值的影响[J]. 硅酸盐通报, 2019, 38(5): 1545-1549. DING X Q, YIN S A, SUN C, et al. Effect of ultrafine slag powder on compressive strength and pH value of vegetation recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1545-1549 (in Chinese). [13] 许 颖, 李伟文, 张威凯, 等. 再生骨料在护坡用植生混凝土的应用及优化研究[J]. 硅酸盐通报, 2019, 38(10): 3229-3236. XU Y, LI W W, ZHANG W K, et al. Application and optimization of ecological concrete made with recycled aggregate for slope protection[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3229-3236 (in Chinese). [14] 王志鹏, 张伟锋, 韦 未, 等. 硅烷浸渍对大孔隙生态混凝土的降碱效果研究[J]. 混凝土, 2019(3): 157-160. WANG Z P, ZHANG W F, WEI W, et al. Study on the effect of silane soakage technique on the alkali reduction of macroporous ecological concrete[J]. Concrete, 2019(3): 157-160 (in Chinese). [15] 史才军, 王吉云, 涂贞军, 等. CO2养护混凝土技术研究进展[J]. 材料导报, 2017, 31(5): 134-138. SHI C J, WANG J Y, TU Z J, et al. Progresses in CO2 curing of concrete[J]. Materials Review, 2017, 31(5): 134-138 (in Chinese). [16] LI L, WU M. An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry[J]. Journal of CO2 Utilization, 2022, 60: 102000. [17] 李 晟, 尹 健, 张 贵, 等. 绿色生态混凝土碳化降碱技术研究[J]. 湘潭大学自然科学学报, 2017, 39(2): 33-37. LI S, YIN J, ZHANG G, et al. Research on alkalinity reduction of green eco-concrete by carbonization[J]. Natural Science Journal of Xiangtan University, 2017, 39(2): 33-37 (in Chinese). [18] LI S, YIN J, ZHANG G. Experimental investigation on optimization of vegetation performance of porous sea sand concrete mixtures by pH adjustment[J]. Construction and Building Materials, 2020, 249: 118775. [19] 廖文宇, 石 宪, 黄泽峰, 等. 植生混凝土的降碱技术及种植效果研究[J]. 混凝土, 2013(7): 155-158. LIAO W Y, SHI X, HUANG Z F, et al. Study on decreasing alkalinity of planting concrete and the resulting planting effect[J]. Concrete, 2013(7): 155-158 (in Chinese). [20] XUE K W, WAN C J, XU Y W, et al. Effect of pre-hydration age on phase assemblage, microstructure and compressive strength of CO2 cured cement mortar[J]. Construction and Building Materials, 2022, 325: 126760. [21] LIU R Q, YANG Y Q, ZHAO X K, et al. Quantitative phase analysis and microstructural characterization of Portland cement blends with diatomite waste using the Rietveld method[J]. Journal of Materials Science, 2021, 56(2): 1242-1254. [22] SHAO Y X, ROSTAMI V, HE Z, et al. Accelerated carbonation of Portland limestone cement[J]. Journal of Materials in Civil Engineering, 2014, 26(1): 117-124. [23] HU L L, JIA Y S, CHEN Z, et al. An insight of carbonation-hydration kinetics and microstructure characterization of cement paste under accelerated carbonation at early age[J]. Cement and Concrete Composites, 2022, 134: 104763. [24] CHANG J, FANG Y F, SHANG X P. The role of β-C2S and γ-C2S in carbon capture and strength development[J]. Materials and Structures, 2016, 49(10): 4417-4424. [25] MONKMAN S, SARGAM Y, NABOKA O, et al. Early age impacts of CO2 activation on the tricalcium silicate and cement systems[J]. Journal of CO2 Utilization, 2022, 65: 102254. [26] ROSTAMI V, SHAO Y X, BOYD A J, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cement and Concrete Research, 2012, 42(1): 186-193. [27] HE P P, SHI C J, TU Z J, et al. Effect of further water curing on compressive strength and microstructure of CO2-cured concrete[J]. Cement and Concrete Composites, 2016, 72: 80-88. [28] LIU M, HONG S X, WANG Y S, et al. Compositions and microstructures of hardened cement paste with carbonation curing and further water curing[J]. Construction and Building Materials, 2021, 267: 121724. [29] MU Y D, LIU Z C, WANG F Z, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material[J]. Construction and Building Materials, 2018, 177: 322-331. [30] SHTEPENKO O, HILLS C, BROUGH A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chemical Engineering Journal, 2006, 118(1/2): 107-118. |