[1] LEWIS N S, NOCERA D G. Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735. [2] ANTONAIA A, CASTALDO A, ADDONIZIO M L, et al. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1604-1611. [3] ZHOU W L, DENG H M, YU L, et al. Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A=Pb, Ba; B=Ti) by ion substitution technique[J]. Ceramics International, 2015, 41(10): 13389-13392. [4] ZHAO W, ZHANG Q, WANG H G, et al. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy, 2020, 73: 104783. [5] THANH L T H, DOAN N B, DUNG N Q, et al. Origin of room temperature ferromagnetism in Cr-doped lead-free ferroelectric Bi0.5Na0.5TiO3 materials[J]. Journal of Electronic Materials, 2017, 46(6): 3367-3372. [6] GEBHARDT J, RAPPE A M. Transition metal inverse-hybrid perovskites[J]. Journal of Materials Chemistry A, 2018, 6(30): 14560-14565. [7] PHAM T T, KANG S G, SHIN E W. Optical and structural properties of Mo-doped NiTiO3 materials synthesized via modified Pechini methods[J]. Applied Surface Science, 2017, 411: 18-26. [8] LIU Y Y, ZHOU W, WANG C, et al. Electronic structure and optical properties of SrTiO3 codoped by W/Mo on different cationic sites with C/N from hybrid functional calculations[J]. Computational Materials Science, 2018, 146: 150-157. [9] KHAN M, XU J N, CHEN N, et al. First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2[J]. Journal of Alloys and Compounds, 2012, 513: 539-545. [10] YU X H, LI C S, LING Y, et al. First principles calculations of electronic and optical properties of Mo-doped rutile TiO2[J]. Journal of Alloys and Compounds, 2010, 507(1): 33-37. [11] MEYER K C, GRÖTING M, ALBE K. Octahedral tilt transitions in the relaxor ferroelectric Na1/2Bi1/2TiO3[J]. Journal of Solid State Chemistry, 2015, 227: 117-122. [12] JONES G O, THOMAS P A. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3[J]. Acta Crystallographica Section B Structural Science, 2002, 58(2): 168-178. [13] MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276. [14] JU L, XU T S, ZHANG Y J, et al. First-principles study of magnetism in transition metal doped Na0.5Bi0.5TiO3 system[J]. Chinese Journal of Chemical Physics, 2016, 29(4): 462-466. [15] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. [16] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, Condensed Matter, 1994, 49(20): 14251-14269. [17] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [18] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-body systems[J]. Physical Review B, Condensed Matter, 1981, 23: 5048-5079. [19] BLÖCHL. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. [20] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [21] BAI W F, SHEN B, ZHAI J W, et al. Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me0.5Ti0.5)O3 (Me=Zn, Mg, Ni, Co)[J]. Dalton Transactions, 2016, 45(36): 14141-14153. [22] DUNG D D, DOAN N B, DUNG N Q, et al. Role of Co dopants on the structural, optical and magnetic properties of lead-free ferroelectric Na0.5Bi0.5TiO3 materials[J]. Journal of Science: Advanced Materials and Devices, 2019, 4(4): 584-590. [23] XIE H, ZHAO Y Y, XU J W, et al. Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2018, 743: 73-82. [24] SANJURJO J A, LÓPEZ-CRUZ E, BURNS G. High-pressure Raman study of zone-center phonons in PbTiO3[J]. Physical Review B, 1983, 28(12): 7260-7268. [25] ZHANG H X, UUSIMÄKI A, LEPPÄVUORI S, et al. Phase transition revealed by Raman spectroscopy in screen-printed lead zirconate titanate thick films[J]. Journal of Applied Physics, 1994, 76(7): 4294-4300. [26] WANG J, ZHOU Z H, XUE J M. Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1-xTiPbxO3 thin films[J]. Acta Materialia, 2006, 54(6): 1691-1698. [27] ROUT D, MOON K S, KANG S J L, et al. Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3-xSrTiO3 system[J]. Journal of Applied Physics, 2010, 108(8): 084102. [28] AKSEL E, FORRESTER J S, KOWALSKI B, et al. Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature[J]. Physical Review B, 2012, 85(2): 024121. [29] CHEN Z X, YUAN C L, LIU X, et al. Optical and electrical properties of ferroelectric Bi0.5Na0.5TiO3-NiTiO3 semiconductor ceramics[J]. Materials Science in Semiconductor Processing, 2020, 115: 105089. [30] HUANG F G, XIAO H, GUAN L, et al. Visible or near-infrared light self-powered photodetectors based on transparent ferroelectric ceramics[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33950-33959. [31] CHEN Z X, YUAN C L, LIU X, et al. Optical and electrical properties of ferroelectric BaxBi0.5-0.5xAg0.05-0.5xNa0.45Ti1-xNi0.5xNb0.5xO3 semiconductor ceramics[J]. Materials Letters, 2020, 268: 127627. [32] HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography[J]. Computational Materials Science, 2017, 128: 140-184. [33] SETYAWAN W, CURTAROLO S. High-throughput electronic band structure calculations: challenges and tools[J]. Computational Materials Science, 2010, 49(2): 299-312. [34] 周树兰,赵 显,江向平,等.三方相Na1/2Bi1/2TiO3的电子结构、Born有效电荷张量和Γ声子的第一性原理研究[J].陶瓷学报,2014,35(1):12-16. ZHOU S L, ZHAO X, JIANG X P, et al. First-principles study of the electronic structure, born effective charge tensor and Γ phonon of rhomboherdral Na1/2Bi1/2TiO3[J]. Journal of Ceramics, 2014, 35(1): 12-16 (in Chinese). [35] CHEN L J, LI W X, DAI J F, et al. First-prinicples study of Mn-N co-doped p-type ZnO[J]. Acta Physica Sinica, 2014, 63(19): 196101. [36] MOSS T S. The interpretation of the properties of indium antimonide[J]. Proceedings of the Physical Society Section B, 1954, 67(10): 775-782. [37] BURSTEIN E. Anomalous optical absorption limit in InSb[J]. Physical Review, 1954, 93(3): 632-633. [38] TIAN J J, DENG H M, SUN L, et al. Effects of Co doping on structure and optical properties of TiO2 thin films prepared by sol-gel method[J]. Thin Solid Films, 2012, 520(16): 5179-5183. [39] FRANCO A J, BANERJEE P J, ROMANHOLO P L J. Effect of composition induced transition in the optical band-gap, dielectric and magnetic properties of Gd doped Na0.5Bi0.5TiO3 complex perovskite[J]. Journal of Alloys and Compounds, 2018, 764: 122-127. |