BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (9): 3064-3080.
• Ceramics • Previous Articles Next Articles
TAN Hua1,2, NAN Bo1,2, MA Weigang2, GUO Xin1,2, LIU Jing1, YUAN Qi1, YANG Tingwang3, LU Wenlong3, ZANG Jiadong3, LI Haoyu3, YAN Wenchao3, ZHANG Shengwei3, LU Ya1,2, ZHANG Haibo1,2
Received:
2021-03-19
Revised:
2021-05-14
Online:
2021-09-15
Published:
2021-10-08
CLC Number:
TAN Hua, NAN Bo, MA Weigang, GUO Xin, LIU Jing, YUAN Qi, YANG Tingwang, LU Wenlong, ZANG Jiadong, LI Haoyu, YAN Wenchao, ZHANG Shengwei, LU Ya, ZHANG Haibo. Rapid Sintering Techniques of Advanced Ceramic Materials: A Review[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3064-3080.
[1] KINGERY W D, LENSE E. Ancient technology to modern science[M]. American Ceramic Society, 1985. [2] 魏玉静,方海亮,邱小小,等.SPS制备MgO-Y2O3复相陶瓷及其性能研究[J].硅酸盐通报,2020,39(7):2274-2280. WEI Y J, FANG H L, QIU X X, et al. Preparation and performance research of MgO-Y2O3 composite ceramics by SPS[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2274-2280 (in Chinese). [3] 赵江涛,沈金城,刘 欢,等.放电等离子体烧结下Nb掺杂量对TiO2陶瓷靶材性能的影响[J].硅酸盐通报,2018,37(9):2991-2994. ZHAO J T, SHEN J C, LIU H, et al. Effect of Nb doping on the properties of TiO2 ceramic target under spark plasma sintering[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2991-2994 (in Chinese). [4] SHEN Z J, ZHAO Z, PENG H, et al. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening[J]. Nature, 2002, 417(6886): 266-269. [5] MUNIR Z A, QUACH D V, OHYANAGI M. Electric current activation of sintering: a review of the pulsed electric current sintering process[J]. Journal of the American Ceramic Society, 2011, 94(1): 1-19. [6] ORRÙ R, LICHERI R, LOCCI A M, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering[J]. Materials Science and Engineering: R: Reports, 2009, 63(4/5/6): 127-287. [7] MOSHTAGHIOUN B M, CUMBRERA-HERNÁNDEZ F L, GÓMEZ-GARCÍA D, et al. Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C)[J]. Journal of the European Ceramic Society, 2013, 33(2): 361-369. [8] JI W, REHMAN S S, WANG W M, et al. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism[J]. Scientific Reports, 2015, 5: 15827. [9] HAYUN S, PARIS V, MITRANI R, et al. Microstructure and mechanical properties of silicon carbide processed by spark plasma sintering (SPS)[J]. Ceramics International, 2012, 38(8): 6335-6340. [10] BIJALWAN V, PRAJZLER V, ERHART J, et al. Rapid pressure-less and spark plasma sintering of (Ba0.85Ca0.15Zr0.1T0.9)O3 lead-free piezoelectric ceramics[J]. Journal of the European Ceramic Society, 2021, 41(4): 2514-2523. [11] HUANG Y H, WU Y J, LIU B, et al. From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering[J]. Journal of Materials Chemistry A, 2018, 6(10): 4477-4484. [12] LIU B, WU Y, HUANG Y H, et al. Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering[J]. Journal of Materials Science, 2019, 54(6): 4511-4517. [13] SOKOL M, KALABUKHOV S, DARIEL M P, et al. High-pressure spark plasma sintering (SPS) of transparent polycrystalline magnesium aluminate spinel (PMAS)[J]. Journal of the European Ceramic Society, 2014, 34(16): 4305-4310. [14] LALLEMANT L, FANTOZZI G, GARNIER V, et al. Transparent polycrystalline alumina obtained by SPS: green bodies processing effect[J]. Journal of the European Ceramic Society, 2012, 32(11): 2909-2915. [15] OMORI M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)[J]. Materials Science and Engineering: A, 2000, 287(2): 183-188. [16] SHEN Z J, JOHNSSON M, ZHAO Z, et al. Spark plasma sintering of alumina[J]. Journal of the American Ceramic Society, 2002, 85(8): 1921-1927. [17] MUNIR Z A, ANSELMI-TAMBURINI U, OHYANAGI M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method[J]. Journal of Materials Science, 2006, 41(3): 763-777. [18] MUNIR Z A. The effect of external electric fields on the nature and properties of materials synthesized by self-propagating combustion[J]. Materials Science and Engineering: A, 2000, 287(2): 125-137. [19] CONRAD H. Effects of electric current on solid state phase transformations in metals[J]. Materials Science and Engineering: A, 2000, 287(2): 227-237. [20] CONRAD H, YANG D. Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures[J]. Acta Materialia, 2002, 50(11): 2851-2866. [21] XU J, CASOLCO S R, GARAY J E. Effect of varying displacement rates on the densification of nanostructured zirconia by current activation[J]. Journal of the American Ceramic Society, 2009, 92(7): 1506-1513. [22] MATSUGI K, KURAMOTO H, HATAYAMA T, et al. Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders[J]. Journal of Materials Processing Technology, 2003, 134(2): 225-232. [23] ABE T, HASHIMOTO H, PARK Y H, et al. Application of ultrasonic image to the evaluation of temperature distribution in metal powder compacts during spark plasma activated sintering[J]. Nondestructive Characterization of Materials VIII, 1998: 251-256. [24] WANG Y C, FU Z Y, ZHANG Q J. SPS temperature distribution of different conductivity materials[J]. Key Engineering Materials, 2002, 224/225/226: 717-720. [25] WANG Y C, FU Z Y, WANG W M. Numerical simulation of the temperature field in sintering of BN by SPS[J]. Key Engineering Materials, 2003, 249: 471-476. [26] VANMEENSEL K, LAPTEV A, HENNICKE J, et al. Modelling of the temperature distribution during field assisted sintering[J]. Acta Materialia, 2005, 53(16): 4379-4388. [27] ANSELMI-TAMBURINI U, GENNARI S, GARAY J E, et al. Fundamental investigations on the spark plasma sintering/synthesis process[J]. Materials Science and Engineering: A, 2005, 394(1/2): 139-148. [28] LEVIN L, FRAGE N, DARIEL M P. The effect of Ti and TiO2 additions on the pressureless sintering of B4C[J]. Metallurgical and Materials Transactions A, 1999, 30(12): 3201-3210. [29] JHA S K, PHUAH X L, LUO J, et al. The effects of external fields in ceramic sintering[J]. Journal of the American Ceramic Society, 2019, 102(1): 5-31. [30] TIWARI D, BASU B, BISWAS K. Simulation of thermal and electric field evolution during spark plasma sintering[J]. Ceramics International, 2009, 35(2): 699-708. [31] ANSELMI-TAMBURINI U, GROZA J R. Critical assessment 28: electrical field/current application-a revolution in materials processing/sintering?[J]. Materials Science and Technology, 2017, 33(16): 1855-1862. [32] HOLLAND T B, ANSELMI-TAMBURINI U, MUKHERJEE A K. Electric fields and the future of scalability in spark plasma sintering[J]. Scripta Materialia, 2013, 69(2): 117-121. [33] HOLLAND T B, ANSELMI-TAMBURINI U, QUACH D V, et al. Local field strengths during early stage field assisted sintering (FAST) of dielectric materials[J]. Journal of the European Ceramic Society, 2012, 32(14): 3659-3666. [34] CHAIM R. Electric field effects during spark plasma sintering of ceramic nanoparticles[J]. Journal of Materials Science, 2013, 48(1): 502-510. [35] GRASSO S, SAKKA Y. Electric field in SPS: geometry and pulsed current effects[J]. Journal of the Ceramic Society of Japan, 2013, 121(1414): 524-526. [36] SALAMON D, ERIKSSON M, NYGREN M, et al. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?[J]. Science and Technology of Advanced Materials, 2012, 13(1): 015005. [37] TAN H, KALOUSEK R, SALAMON D. Increasing energy efficiency by tailoring the electric pulse pattern during spark plasma sintering[J]. Ceramics International, 2019, 45(18): 24392-24397. [38] QUOC DANG K, KAWAHARA M, TAKEI S, et al. Effects of pulsed current waveforms on sample temperature and sintering behavior in PECS of alumina[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56(12): 780-787. [39] XIE G Q, OHASHI O, CHIBA K, et al. Frequency effect on pulse electric current sintering process of pure aluminum powder[J]. Materials Science and Engineering: A, 2003, 359(1/2): 384-390. [40] MANIERE C, PAVIA A, DURAND L, et al. Pulse analysis and electric contact measurements in spark plasma sintering[J]. Electric Power Systems Research, 2015, 127: 307-313. [41] GUILLARD F, ALLEMAND A, LULEWICZ J D, et al. Densification of SiC by SPS-effects of time, temperature and pressure[J]. Journal of the European Ceramic Society, 2007, 27(7): 2725-2728. [42] QUACH D V, AVILA-PAREDES H, KIM S, et al. Pressure effects and grain growth kinetics in the consolidation of nanostructured fully stabilized zirconia by pulsed electric current sintering[J]. Acta Materialia, 2010, 58(15): 5022-5030. [43] MENG F C, FU Z Y, ZHANG J Y, et al. Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate[J]. Journal of the American Ceramic Society, 2007, 90(4): 1262-1264. [44] ANSELMI-TAMBURINI U, GARAY J E, MUNIR Z A, et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: part I. Densification studies[J]. Journal of Materials Research, 2004, 19(11): 3255-3262. [45] ANSELMI-TAMBURINI U, GARAY J E, MUNIR Z A. Fast low-temperature consolidation of bulk nanometric ceramic materials[J]. Scripta Materialia, 2006, 54(5): 823-828. [46] BALIMA F, BELLIN F, MICHAU D, et al. High pressure pulsed electric current activated equipment (HP-SPS) for material processing[J]. Materials & Design, 2018, 139: 541-548. [47] GRASSO S, KIM B N, HU C F, et al. Highly transparent pure alumina fabricated by high-pressure spark plasma sintering[J]. Journal of the American Ceramic Society, 2010, 93(9): 2460-2462. [48] ZHANG H B, KIM B N, MORITA K, et al. Fabrication of transparent yttria by high-pressure spark plasma sintering[J]. Journal of the American Ceramic Society, 2011, 94(10): 3206-3210. [49] GRAAF M A C G, MAAT J H H, BURGGRAAF A J. Microstructure and sintering kinetics of highly reactive ZrO2-Y2O3 ceramics[J]. Journal of Materials Science, 1985, 20(4): 1407-1418. [50] ONODA G Y, TONER J. Fractal dimensions of model particle packings having multiple generations of agglomerates[J]. Journal of the American Ceramic Society, 1986, 69(11): C-278-C-279. [51] MAKINO Y, SAKAGUCHI M, TERADA J, et al. Consolidation of ultrafine alumina powders with SPS method[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54(4): 219-225. [52] GUILLON O, JESUS G, DARGATZ B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments[J]. Advanced Engineering Materials, 2014, 16(7): 830-849. [53] CHAIM R, SHEN Z J. Grain size control by pressure application regime during spark plasma sintering of Nd-YAG nanopowders[J]. Journal of Materials Science, 2008, 43(14): 5023-5027. [54] GRASSO S, SAKKA Y, MAIZZA G. Pressure effects on temperature distribution during spark plasma sintering with graphite sample[J]. Materials Transactions, 2009, 50(8): 2111-2114. [55] SCITI D, GALIZIA P, REIMER T, et al. Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering[J]. Composites Part B: Engineering, 2021, 216: 108839. [56] TOKITA M. The potential of spark plasma sintering (SPS) method for the fabrication on an industrial scale of functionally graded materials[J]. Advances in Science and Technology, 2010, 63: 322-331. [57] DANCER C J. Flash sintering of ceramic materials[J]. Materials Research Express, 2016, 3(10): 102001. [58] CHAIM R, CHEVALLIER G, WEIBEL A, et al. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review[J]. Journal of Materials Science, 2018, 53(5): 3087-3105. [59] TODD R I. Flash sintering of ceramics: a short review[M]//Proceedings of the IV Advanced Ceramics and Applications Conference. Paris: Atlantis Press, 2017: 1-12. [60] BIESUZ M, SGLAVO V M. Flash sintering of ceramics[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 115-143. [61] YU M, GRASSO S, MCKINNON R, et al. Review of flash sintering: materials, mechanisms and modelling[J]. Advances in Applied Ceramics, 2017, 116(1): 24-60. [62] COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping[J]. Journal of the European Ceramic Society, 2011, 31(15): 2827-2837. [63] CALIMAN L B, BICHAUD E, SOUDANT P, et al. A simple flash sintering setup under applied mechanical stress and controlled atmosphere[J]. MethodsX, 2015, 2: 392-398. [64] GRASSO S, SAUNDERS T, PORWAL H, et al. Flash spark plasma sintering (FSPS) of pure ZrB2[J]. Journal of the American Ceramic Society, 2014, 97(8): 2405-2408. [65] SAUNDERS T, GRASSO S, REECE M J. Ultrafast-contactless flash sintering using plasma electrodes[J]. Scientific Reports, 2016, 6: 27222. [66] FRANCIS J S C. A study on the phenomena of flash sintering with tetragonal zirconia[D]. Boulder: University of Colorado Boulder, 2013. [67] COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559. [68] GHOSH S, CHOKSHI A H, LEE P, et al. A huge effect of weak dc electrical fields on grain growth in zirconia[J]. Journal of the American Ceramic Society, 2009, 92(8): 1856-1859. [69] CHAIM R. Liquid film capillary mechanism for densification of ceramic powders during flash sintering[J]. Materials, 2016, 9(4): 280. [70] TODD R I, ZAPATA-SOLVAS E, BONILLA R S, et al. Electrical characteristics of flash sintering: thermal runaway of Joule heating[J]. Journal of the European Ceramic Society, 2015, 35(6): 1865-1877. [71] NAIK K S, SGLAVO V M, RAJ R. Flash sintering as a nucleation phenomenon and a model thereof[J]. Journal of the European Ceramic Society, 2014, 34(15): 4063-4067. [72] KIM S W, KIM S G, JUNG J I, et al. Enhanced grain boundary mobility in yttria-stabilized cubic zirconia under an electric current[J]. Journal of the American Ceramic Society, 2011, 94(12): 4231-4238. [73] YOSHIDA H, MORITA K, KIM B N, et al. Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping[J]. Acta Materialia, 2016, 106: 344-352. [74] JHA S K, TERAUDS K, LEBRUN J M, et al. Beyond flash sintering in 3mol% yttria stabilized zirconia[J]. Journal of the Ceramic Society of Japan, 2016, 124(4): 283-288. [75] BONOLA C, CAMAGNI P, CHIODELLI P, et al. Study of defects introduced by electroreduction in YSZ[J]. Radiation Effects and Defects in Solids, 1991, 119/120/121(1): 457-462. [76] QIN W, MAJIDI H, YUN J, et al. Electrode effects on microstructure formation during FLASH sintering of yttrium-stabilized zirconia[J]. Journal of the American Ceramic Society, 2016, 99(7): 2253-2259. [77] MANGANO F, CHAMBRONE L, VAN NOORT R, et al. Direct metal laser sintering titanium dental implants: a review of the current literature[J]. International Journal of Biomaterials, 2014, 2014: 461534. [78] SING S L, YEONG W Y, WIRIA F E, et al. Direct selective laser sintering and melting of ceramics: a review[J]. Rapid Prototyping Journal, 2017, 23(3): 611-623. [79] SHIRAZI S F, GHAREHKHANI S, MEHRALI M, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing[J]. Science and Technology of Advanced Materials, 2015, 16(3): 033502. [80] ZENG K, PAL D, STUCKER B. A review of thermal analysis methods in laser sintering and selective laser melting[J]. 23rd Annual International Solid Freeform Fabrication Symposium-an Additive Manufacturing Conference, SFF 2012, 2012: 796-814. [81] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477. [82] KRUTH J P, WANG X, LAOUI T, et al. Lasers and materials in selective laser sintering[J]. Assembly Automation, 2003, 23(4): 357-371. [83] KOCHAN D, KAI C C, DU Z H. Rapid prototyping issues in the 21st century[J]. Computers in Industry, 1999, 39(1): 3-10. [84] MORGAN R, SUTCLIFFE C J, O’NEILL W. Experimental investigation of nanosecond pulsed Nd: YAG laser re-melted pre-placed powder beds[J]. Rapid Prototyping Journal, 2001, 7(3): 159-172. [85] VAN DER SCHUEREN B, KRUTH J P. Powder deposition in selective metal powder sintering[J]. Rapid Prototyping Journal, 1995, 1(3): 23-31. [86] KRUTH J P, VAN DER SCHUEREN B, BONSE J E, et al. Basic powder metallurgical aspects in selective metal powder sintering[J]. CIRP Annals, 1996, 45(1): 183-186. [87] NIU H J, CHANG I T H. Selective laser sintering of gas atomized M2 high speed steel powder[J]. Journal of Materials Science, 2000, 35(1): 31-38. [88] KUMAR S. Selective laser sintering: a qualitative and objective approach[J]. JOM, 2003, 55(10): 43-47. [89] AGARWALA M, BOURELL D, BEAMAN J, et al. Direct selective laser sintering of metals[J]. Rapid Prototyping Journal, 1995, 1(1): 26-36. [90] XIONG J, LI X B, FENG Z J, et al. Fabrication and properties of in situ formed mullite coating by laser-sintering[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 675-678. [91] HAYDEN C. Excimer laser micromachined three-dimensional microstructures—techniques and applications[G]//MEMS/NEMS. Boston, MA: Springer US, 2006: 880-904. [92] PERRIE W, RUSHTON A, GILL M, et al. Femtosecond laser micro-structuring of alumina ceramic[J]. Applied Surface Science, 2005, 248(1/2/3/4): 213-217. [93] SUBRAMANIAN K, VAIL N, BARLOW J, et al. Selective laser sintering of alumina with polymer binders[J]. Rapid Prototyping Journal, 1995, 1(2): 24-35. [94] CHEN A N, WU J M, LIU K, et al. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review[J]. Advances in Applied Ceramics, 2018, 117(2): 100-117. [95] YEONG W, YAP C, MAPAR M, et al. State-of-the-art review on selective laser melting of ceramics[M]//High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, CRC Press, 2013: 65-70. [96] TANG Y, FUH J Y H, LOH H T, et al. Direct laser sintering of a silica sand[J]. Materials & Design, 2003, 24(8): 623-629. [97] YVES-CHRISTIAN H, JAN W, WILHELM M, et al. Net shaped high performance oxide ceramic parts by selective laser melting[J]. Physics Procedia, 2010, 5: 587-594. [98] YANG L, MERTENS R, FERRUCCI M, et al. Continuous graded Gyroid cellular structures fabricated by selective laser melting: design, manufacturing and mechanical properties[J]. Materials & Design, 2019, 162: 394-404. [99] YANG L, YAN C Z, HAN C J, et al. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 148: 149-157. [100] LIU S S, LI M, WU J M, et al. Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres[J]. Ceramics International, 2020, 46(4): 4240-4247. [101] NAKUM V R, VYAS K M, MEHTA N C. Research on induction heating: a review[J]. International Journal of Science and Engineering Applications, 2013, 2(6): 141-144. [102] KENNEDY M W, AKHTAR S, BAKKEN J A, et al. Review of classical design methods as applied to aluminium billet heating with induction coils[M]//EPD Congress 2011. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012: 706-722. [103] MISHRA A, BAG S, PAL S. Induction heating in sustainable manufacturing and material processing technologies: a state of the art literature review[M]//Encyclopedia of Renewable and Sustainable Materials. Amsterdam: Elsevier, 2020: 343-357. [104] BAYERL T, DUHOVIC M, MITSCHANG P, et al. The heating of polymer composites by electromagnetic induction: a review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 27-40. [105] HIROTA I, YAMASHITA H, OMORI H, et al. Historical review of electric household appliances using induction-heating and future challenging trends[J]. IEEJ Transactions on Fundamentals and Materials, 2004, 124(8): 713-719. [106] LUCÍA O, MAUSSION P, DEDE E J, et al. Induction heating technology and its applications: past developments, current technology, and future challenges[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2509-2520. [107] SHON I J. High-frequency induction sintering of B4C ceramics and its mechanical properties[J]. Ceramics International, 2016, 42(16): 19406-19412. [108] KIM W, OH H S, SHON I J. The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 376-381. [109] KWON S M, LEE S J, SHON I J. Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high-frequency induction heating[J]. Ceramics International, 2015, 41(1): 835-842. [110] WANG W N, LIU J C, SONG C Y. Directionally solidified Al2O3/ZrO2 eutectic ceramic prepared with induction heating zone melting[J]. Journal of Materials Research, 2018, 33(11): 1681-1689. [111] ZHAI S Y, LIU J C, LIU Q. Preparation of directionally solidified Al2O3/YAG/ZrO2 ternary eutectic ceramic with induction heating zone melting[J]. Journal of Alloys and Compounds, 2019, 789: 240-248. [112] BIESUZ M, SAUNDERS T, KE D Y, et al. A review of electromagnetic processing of materials (EPM): heating, sintering, joining and forming[J]. Journal of Materials Science & Technology, 2021, 69: 239-272. [113] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications[J]. Journal of Alloys and Compounds, 2010, 494(1-2): 175-189. [114] AYAPPA K G. Modelling transport processes during microwave heating: a review[J]. Reviews in Chemical Engineering, 1997, 13(2): 1-69. [115] JONES D A, LELYVELD T P, MAVROFIDIS S D, et al. Microwave heating applications in environmental engineering: a review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90. [116] 梁宝岩,张旺玺,王艳芝,等.微波烧结制备Ti3SiC2-金刚石复合材料的显微形貌及界面反应机理[J].硅酸盐通报,2016,35(3):725-731. LIANG B Y, ZHANG W X, WANG Y Z, et al. Microstructure and interfacial reaction mechanism of Ti3SiC2-diamond composites fabricated by microwave sintering[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 725-731 (in Chinese). [117] FARAJI S, ANI F N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors: a review[J]. Journal of Power Sources, 2014, 263: 338-360. [118] ALEM S A A, LATIFI R, ANGIZI S, et al. Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review[J]. Materials and Manufacturing Processes, 2020, 35(3): 1-25. [119] ANWAR J, SHAFIQUE U, ZAMAN W, et al. Microwave chemistry: effect of ions on dielectric heating in microwave ovens[J]. Arabian Journal of Chemistry, 2015, 8(1): 100-104. [120] CHEN Y N, WANG Z J, YANG T, et al. Crystallization kinetics of amorphous lead zirconate titanate thin films in a microwave magnetic field[J]. Acta Materialia, 2014, 71: 1-10. [121] CHENG J P, ROY R, AGRAWAL D. Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites[J]. Journal of Materials Science Letters, 2001, 20(17): 1561-1563. [122] VENKATESWARLU K, SAURABH S, RAJINIKANTH V, et al. Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering[J]. Journal of Materials Engineering and Performance, 2010, 19(2): 231-236. [123] GHASALI E, ALIZADEH M, EBADZADEH T, et al. Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering[J]. Journal of Materials Research and Technology, 2015, 4(4): 411-415. [124] NATH S, SINHA N, BASU B. Microstructure, mechanical and tribological properties of microwave sintered calcia-doped zirconia for biomedical applications[J]. Ceramics International, 2008, 34(6): 1509-1520. [125] 张 帆,王 鑫,张 良,等.ZrO2陶瓷的微波烧结制备及其性能[J].硅酸盐学报,2019,47(3):353-357. ZHANG F, WANG X, ZHANG L, et al. Preparation and properties of ZrO2 ceramics by microwave sintering[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 353-357 (in Chinese). [126] SALAMON D, KALOUSEK R, ZLÁMAL J, et al. Role of conduction and convection heat transfer during rapid crack-free sintering of bulk ceramic with low thermal conductivity[J]. Journal of the European Ceramic Society, 2016, 36(12): 2955-2959. [127] PRAJZLER V, SALAMON D, MACA K. Pressure-less rapid rate sintering of pre-sintered alumina and zirconia ceramics[J]. Ceramics International, 2018, 44(9): 10840-10846. |
[1] | HU Pengbing, CHEN Juan, SUN Hang, CAI Gaojie, HU Xianyue, LIU Jinning. Strength Development Monitoring of Geopolymer Mortar Based on Piezoelectric Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2905-2910. |
[2] | ZHU Jianping, YUE Hongzhi, BAI Rong, ZHU Junge, LI Hongda. Research on Preparation of Foamed Ceramics from Gold Tailings [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2989-2997. |
[3] | ZHANG Heng, WU Yun, LI Daoqian, LI Zhuolin, WANG Yiyang, WU Songsong, SUN Zhiyuan, WEN Guangwu. Effect of Heat Treatment Atmosphere on the Crystallization Behavior of SiBON Ceramic Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3114-3121. |
[4] | LIN Lichen, WAN Detian, LIU Xiaogen, LI Kai, BAO Yiwang, LI Yueming, SUN Yi. Shear Creep Behavior of Ceramics Adhesive Based on Cross-Bonded Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3130-3137. |
[5] | HAN Han, PENG Ruixin, LI Xiaofan, ZHAO Huifeng, JIANG Hong, MA Yanping. Crystallization Phase Change and Mechanical Properties Characterization of LAS Glass-Ceramics after Ion Exchange [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3138-3144. |
[6] | ZHAO Chunxia, FAN Shigang, ZHANG Lihong, LIU Jie, HE Can, LI Yue. High Quality Ultra-Low Expansion Transparent Glass-Ceramics Achieve Mass Production [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3185-3787. |
[7] | YUAN Qi, TAN Hua, YANG Tingwang, LU Wenlong, ZANG Jiadong, LI Haoyu, YAN Wenchao, ZHANG Shengwei, LU Ya, ZHANG Haibo. Preparation Methods and Research Status of Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2687-2701. |
[8] | LYU Simin, YANG Jinping, HAN Dan, LIU Mengwei, ZHANG Jian, WANG Shiwei. Effect of La2O3 on Densification and Properties of Transparent Magnesium Aluminate Spinel Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2719-2725. |
[9] | DAI Yonggang, LU Chenglong, ZHANG Yinfeng, ZHANG Guotao. Foaming Properties of Ceramics Foamed by Polishing Slag System [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2726-2733. |
[10] | ALATENG Shaga, CHEN Guanhong, CHEN Xing. Research Progress on Preparation of Biomimetic Materials by Freeze Casting under Magnetic Field [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2348-2359. |
[11] | GUO Jinyu, XIE Hehan, YANG Xiaole, LIU Yueming, MA Zhengyu, YANG Xianfeng, XIE Zhipeng. Preparation of Fine-Grained Alumina Ceramics by Gel 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1927-1936. |
[12] | HE Yining, DAI Gaoshang, WU Jiamin, ZHANG Jie, PAN Mingzhu, CHEN Jingyan, CHEN Ying, WANG Yongjun, ZHANG Hongxing. Effect of Epoxy Resin Content on Properties of Porous Coal Series Kaolin Ceramics Prepared by Selective Laser Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1950-1956. |
[13] | XU Guoliang, LUO Yunlong, WANG Fu, LIU Laibao, LIAO Qilong. Effect of MgO Content on Crystallization Behavior of RSCAF System Glass-Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2083-2089. |
[14] | JIN Xinxin, LIN Peng, LIU Feng, LI Saisai, LI Minghui, XIA Xiaoyu, LAO Dong, JIA Wenbao, SHAN Qing. Effects of Carbon Fiber Length and Content on Properties of SiC Reticulated Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(4): 1330-1337. |
[15] | TANG Haipei, ZHOU Changrong, YAO Kai, TAN Yunchuan, ZHONG Mingqiang, YUAN Changlai. Microstructure and Optical Properties of La2Mo2O9 Doped Sodium Bismuth Titanate Ferroelectric Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(4): 1361-1369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||