[1] 梁天霄,郑元勋.超高性能混凝土的研究综述[J].科技展望,2016,26(36):19-20. LIANG T X, ZHENG Y X. Review of research on ultra-high performance concrete[J]. Science and Technology, 2016, 26(36): 19-20 (in Chinese). [2] 刘翼玮,张祖华,史才军,等.硅灰对高强地聚物胶凝材料性能的影响[J].硅酸盐学报,2020,48(11):1689-1699. LIU Y W, ZHANG Z H, SHI C J, et al. Influence of silica fume on performance of high-strength geopolymer[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1689-1699 (in Chinese). [3] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. [4] WORRELL E, PRICE L, MARTIN N, et al. Carbon dioxide emissions from the global cement industry[J]. Annual Review of Energy and the Environment, 2001, 26(1): 303-329. [5] 郑永超,周钰沦,房桂明,等.利用钢渣制备矿物掺合料对混凝土性能的影响[J].混凝土与水泥制品,2020(7):87-91. ZHENG Y C, ZHOU Y L, FANG G M, et al. Preparation of mineral admixtures from steel slag and its effect on concrete performance[J]. China Concrete and Cement Products, 2020(7): 87-91 (in Chinese). [6] 王 毓.钢渣活性激发及其在水泥基材料中的应用研究[D].淮南:安徽理工大学,2018. WANG Y. Study on active excitation of steel slag and application of building materials[D]. Huainan: Anhui University of Science & Technology, 2018 (in Chinese). [7] 赵计辉.钢渣的粉磨/水化特征及其复合胶凝材料的组成与性能[D].北京:中国矿业大学(北京),2015. ZHAO J H. Grinding and hydration characteristics of steel slag and composition and properties of composite cemtitious materials containing steel slag powder[D]. Beijing: China University of Mining & Technology, Beijing, 2015 (in Chinese). [8] SHI C J, QIAN J S. High performance cementing materials from industrial slags: a review[J]. Resources, Conservation and Recycling, 2000, 29(3): 195-207. [9] PENG Y Z, CHEN K, HU S G. Durability and microstructure of ultra-high performance concrete having high volume of steel slag powder and ultra-fine fly ash[J]. Advanced Materials Research, 2011, 255/256/257/258/259/260: 452-456. [10] WANG Q, SHI M X, YANG J. Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete[J]. Construction and Building Materials, 2016, 123: 601-610. [11] HABEL K. Time dependent behavior of elements combining ultra-high performance fiber reinforced concretes (UHPFRC) and reinforced concrete[J]. Materials and Structures, 2005. [12] WANG X P, YU R, SONG Q L, et al. Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density[J]. Cement and Concrete Research, 2019, 126: 105921. [13] HAMMOUDI A, MOUSSACEB K, BELEBCHOUCHE C, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates[J]. Construction and Building Materials, 2019, 209: 425-436. [14] GHAFARI E, BANDARABADI M, COSTA H, et al. Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015017. [15] GHAFARI E, COSTA H, JÚLIO E. Statistical mixture design approach for eco-efficient UHPC[J]. Cement and Concrete Composites, 2015, 55: 17-25. [16] VENKATESAN M, ZAIB Q, SHAH I H, et al. Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments[J]. Resources, Conservation and Recycling, 2019, 148: 114-123. [17] OZLEM A, KADRI U A, BAHAR S. Self-consolidating high-strength concrete optimization by mixture design method[J]. ACI Materials Journal, 2010, 107(4): 357-364. [18] 余 睿,范定强,水中和,等.基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J].硅酸盐学报,2020,48(8):1145-1154. YU R, FAN D Q, SHUI Z H, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154 (in Chinese). [19] MURALIDHAR R V, CHIRUMAMILA R R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal, 2001, 9(1): 17-23. [20] 沈晓冬.海洋工程水泥与混凝土材料[M].北京:化学工业出版社,2016:48-49. SHEN X D. Marine engineering cement and concrete materials[M]. Beijing: Chemical Industry Press, 2016: 48-49 (in Chinese). [21] MONTGOMERY D C. Design and analysis of experiments: response surface method and designs[M]. New Jersey: Wiley Online Library, 2005. [22] DERRINGER G, SUICH R. Simultaneous optimization of several response variables[J]. Journal of Quality Technology, 1980, 12(4): 214-219. |