BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (9): 2856-2870.
• Cement and Concrete • Previous Articles Next Articles
XU Xiangbo1, YU Yong1, JIN Zuquan1, ZHU Chongai2
Received:
2021-03-26
Revised:
2021-05-18
Online:
2021-09-15
Published:
2021-10-08
CLC Number:
XU Xiangbo, YU Yong, JIN Zuquan, ZHU Chongai. Review on Effects of Microstructure and Mechanical Properties of Ultra-High Performance Concrete by Curing Regimes[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2856-2870.
[1] DE BRITO J, KURDA R. The past and future of sustainable concrete: a critical review and new strategies on cement-based materials[J]. Journal of Cleaner Production, 2021, 281: 123558. [2] 赵金兰,闫浩春,刘 韬,等.论水泥企业碳中和的路径[J].新世纪水泥导报,2021,27(2):1-6+67. ZHAO J L, YAN H C, LIU T, et al. Initial discussion on carbon neutral pathways of cement enterprises[J]. Cement Guide for New Epoch, 2021, 27(2): 1-6+67 (in Chinese). [3] 陈宝春,季 韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24 (in Chinese). [4] HIREMATH P N, YARAGAL S C. Effect of different curing regimes and durations on early strength development of reactive powder concrete[J]. Construction and Building Materials, 2017, 154: 72-87. [5] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. [6] DE LARRARD F, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6): 997-1009. [7] 张云升,张文华,陈振宇.综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用[J].材料导报,2017,31(23):1-16. ZHANG Y S, ZHANG W H, CHEN Z Y. A complete review of ultra-high performance concrete: design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Review, 2017, 31(23): 1-16 (in Chinese). [8] HABEL K, GAUVREAU P. Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading[J]. Cement and Concrete Composites, 2008, 30(10): 938-946. [9] MATTE V, MORANVILLE M. Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes[J]. Cement and Concrete Composites, 1999, 21(1): 1-9. [10] GRAYBEAL B A. Compressive behavior of ultra-high performance fiber-reinforced concrete[J]. ACI Materials Journal, 2007, 104(2): 146-152. [11] GRAYBEAL B, DAVIS M. Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2008, 105(6): 603-609. [12] HABEL K, CHARRON J P, BRAIKE S, et al. Ultra-high performance fibre reinforced concrete mix design in central Canada[J]. Canadian Journal of Civil Engineering, 2008, 35(2): 217-224. [13] HABEL K, VIVIANI M, DENARIÉ E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2006, 36(7): 1362-1370. [14] SHI C J, WU Z M, XIAO J F, et al. A review on ultra high performance concrete: part I. Raw materials and mixture design[J]. Construction and Building Materials, 2015, 101: 741-751. [15] 牛旭婧,朋改非,尚亚杰,等.热水-干热组合养护对超高性能混凝土力学性能的影响[J].硅酸盐学报,2018,46(8):1141-1148. NIU X J, PENG G F, SHANG Y J, et al. Influence of combined curing composed of precuring in hot water and heating in dry air on mechanical properties of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1141-1148 (in Chinese). [16] PENG G F, NIU X J, SHANG Y J, et al. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties[J]. Cement and Concrete Research, 2018, 109: 147-158. [17] HELMI M, HALL M R, STEVENS L A, et al. Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation[J]. Construction and Building Materials, 2016, 105: 554-562. [18] GARAS V Y, KURTIS K E, KAHN L F. Creep of UHPC in tension and compression: effect of thermal treatment[J]. Cement and Concrete Composites, 2012, 34(4): 493-502. [19] ZHANG Y S, SUN W, LIU S F, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cement and Concrete Composites, 2008, 30(9): 831-838. [20] PREM P R, RAMACHANDRA MURTHY A, BHARATKUMAR B H. Influence of curing regime and steel fibres on the mechanical properties of UHPC[J]. Magazine of Concrete Research, 2015, 67(18): 988-1002. [21] YAZICI H, DENIZ E, BARADAN B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete[J]. Construction and Building Materials, 2013, 42: 53-63. [22] FONTANA P, LEHMANN C, MÜLLER U. Influence of hydrothermal curing on micro structure and mechanical properties of ultra-high performance concrete[M]//Brittle Matrix Composites 9. Amsterdam: Elsevier, 2009: 391-398. [23] ZDEB T. An analysis of the steam curing and autoclaving process parameters for reactive powder concretes[J]. Construction and Building Materials, 2017, 131: 758-766. [24] MOSTOFINEJAD D, NIKOO M R, HOSSEINI S A. Determination of optimized mix design and curing conditions of reactive powder concrete (RPC)[J]. Construction and Building Materials, 2016, 123: 754-767. [25] IPEK M, YILMAZ K, SÜMER M, et al. Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase[J]. Construction and Building Materials, 2011, 25(1): 61-68. [26] PHILIPPOT S, MASSE S, ZANNI H, et al. 29Si NMR study of hydration and pozzolanic reactions in reactive powder concrete (RPC)[J]. Magnetic Resonance Imaging, 1996, 14(7/8): 891-893. [27] YAZICI H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures[J]. Building and Environment, 2007, 42(5): 2083-2089. [28] KOH K T, PARK J J, RYU G S, et al. Effect of the compressive strength of ultra-high strength steel fiber reinforced cementitious composites on curing method[J]. Journal of the Korean Society of Civil Engineers, 2007, 27(3A): 427-432. [29] PARK J S, KIM Y J, CHO J R, et al. Early-age strength of ultra-high performance concrete in various curing conditions[J]. Materials (Basel, Switzerland), 2015, 8(8): 5537-5553. [30] SOLIMAN A M, NEHDI M L. Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age[J]. Materials and Structures, 2011, 44(5): 879-899. [31] YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2009, 23(6): 2291-2298. [32] 阎培渝,崔 强.养护制度对高强混凝土强度发展规律的影响[J].硅酸盐学报,2015,43(2):133-137. YAN P Y, CUI Q. Effects of curing regimes on strength development of high-strength concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(2): 133-137 (in Chinese). [33] SOBUZ H R, VISINTIN P, MOHAMED ALI M S, et al. Manufacturing ultra-high performance concrete utilising conventional materials and production methods[J]. Construction and Building Materials, 2016, 111: 251-261. [34] WILLE K, NAAMAN A E, PARRA-MONTESINOS G J. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way[J]. ACI Materials Journal, 2011, 108(1): 46-54. [35] 杨 简,陈宝春,苏家战.钢纤维对超高性能混凝土弹性模量的影响[J].硅酸盐学报,2020,48(5):652-658. YANG J, CHEN B C, SU J Z. Effect of steel fiber on elastic modulus of ultra-high-performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 652-658 (in Chinese). [36] 荆 锐,亢景付,蒋元成.温度升高20~50 ℃对混凝土弹性模量的影响探究[J].硅酸盐通报,2016,35(12):4207-4211. JING R, KANG J F, JIANG Y C. Influence of temperature rising by 20 ℃ to 50 ℃ on concrete elastic modulus[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4207-4211 (in Chinese). [37] 王秋维,史庆轩,陶 毅,等.活性粉末混凝土抗压力学性能及指标取值[J].建筑材料学报,2020,23(6):1381-1389. WANG Q W, SHI Q X, TAO Y, et al. Compressive mechanical properties and indexes of reactive powder concrete[J]. Journal of Building Materials, 2020, 23(6): 1381-1389 (in Chinese). [38] YOO D Y, LEE J H, YOON Y S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites[J]. Composite Structures, 2013, 106: 742-753. [39] HOANG A L, FEHLING E, THAI D K, et al. Evaluation of axial strength in circular STCC columns using UHPC and UHPFRC[J]. Journal of Constructional Steel Research, 2019, 153: 533-549. [40] SAHMARAN M, YAMAN I O. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash[J]. Construction and Building Materials, 2007, 21(1): 150-156. [41] ATIŞ C D, KARAHAN O. Properties of steel fiber reinforced fly ash concrete[J]. Construction and Building Materials, 2009, 23(1): 392-399. [42] 方 志,周传波.活性粉末混凝土动静弹性模量试验研究[J].铁道学报,2018,40(9):128-134. FANG Z, ZHOU C B. Experimental study on the elastic modulus of reactive powder concrete[J]. Journal of the China Railway Society, 2018, 40(9): 128-134 (in Chinese). [43] 郝文秀,徐 晓.钢纤维活性粉末混凝土力学性能试验研究[J].建筑技术,2012,43(1):35-37. HAO W X, XU X. Experimental study on the mechanical properties of reactive powder concrete with steel fibre[J]. Architecture Technology, 2012, 43(1): 35-37 (in Chinese). [44] 吕雪源,王 英,符程俊,等.活性粉末混凝土基本力学性能指标取值[J].哈尔滨工业大学学报,2014,46(10):1-9. LV X Y, WANG Y, FU C H, et al. Basic mechanical property indexes of reactive powder concrete[J]. Journal of Harbin Institute of Technology, 2014, 46(10): 1-9 (in Chinese). [45] 余志武,丁发兴.混凝土受压力学性能统一计算方法[J].建筑结构学报,2003,24(4):41-46. YU Z W, DING F X. Unified calculation method of compressive mechanical properties of concrete[J]. Journal of Building Structures, 2003, 24(4): 41-46 (in Chinese). [46] 柯开展,周瑞忠.掺短切碳纤维活性粉末混凝土的力学性能研究[J].水力发电学报,2007,26(1):90-96. KE K Z, ZHOU R Z. Researches on mechanical properties of carbon fiber reactive powder concrete[J]. Journal of Hydroelectric Engineering, 2007, 26(1): 90-96 (in Chinese). [47] 吴炎海,何雁斌,杨幼华.活性粉末混凝土(RPC200)的力学性能[J].福州大学学报(自然科学版),2003,31(5):598-602. WU Y H, HE Y B, YANG Y H. Investigation on RPC200 mechanical performance[J]. Journal of Fuzhou University (Natural Sciences Edtion), 2003, 31(5): 598-602 (in Chinese). [48] RICHARD P, CHEYREZY M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength[J]. ACI Special Publication, 1994, 144(24): 507-518. [49] GRAYBEAL B A. Material property characterization of ultra-high performance concrete[R]. FHWA-HRT-06-103, 2006: 33-36. [50] RONG Q, HOU X M, GE C. Quantifying curing and composition effects on compressive and tensile strength of 160-250 MPa RPC[J]. Construction and Building Materials, 2020, 241: 117987. [51] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. [52] KANG S T, KIM J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41(10): 1001-1014. [53] 梁咏宁,陈宝春,季 韬,等.砂胶比、水胶比和钢纤维掺量对RPC性能的影响[J].福州大学学报(自然科学版),2011,39(5):748-753. LIANG Y N, CHEN B C, JI T, et al. Effects of sand-binder ratio, water-binder ratio and volume percentage of steel fiber on the performance of RPC[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(5): 748-753 (in Chinese). [54] 王建雷,郝相雨,籍凤秋.钢纤维对RPC混凝土力学性能影响研究[J].低温建筑技术,2008,30(3):18-20. WANG J L, HAO X Y, JI F Q. Effect of steel fiber on mechanical properties of RPC[J]. Low Temperature Architecture Technology, 2008, 30(3): 18-20 (in Chinese). [55] 季 韬,陈宝春,庄一舟,等.活性粉末混凝土抗裂性能试验研究[J].福州大学学报(自然科学版),2011,39(3):434-437+449. JI T, CHEN B C, ZHUANG Y Z, et al. Study for the cracking resistant behavior of reactive powder concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(3): 434-437+449 (in Chinese). [56] 姚志雄,周 健,周瑞忠.活性粉末混凝土断裂性能的试验研究[J].建筑材料学报,2006,9(6):654-659. YAO Z X, ZHOU J, ZHOU R Z. Experimental study on fracture properties of reactive powder concrete (RPC)[J]. Journal of Building Materials, 2006, 9(6): 654-659 (in Chinese). [57] 苏 捷,史才军,秦红杰,等.超高性能混凝土抗折强度尺寸效应[J].硅酸盐学报,2020,48(11):1740-1746. SU J, SHI C J, QIN H J, et al. Scale effect of flexural strength on ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1740-1746 (in Chinese). [58] MASSIDDA L, SANNA U, COCCO E, et al. High pressure steam curing of reactive-powder mortars[J]. Special Publication, 2001, 200: 447-464. [59] ZHANG H R, JI T, LIN X Y. Pullout behavior of steel fibers with different shapes from ultra-high performance concrete (UHPC) prepared with granite powder under different curing conditions[J]. Construction and Building Materials, 2019, 211: 688-702. [60] WU Z M, SHI C J, HE W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes[J]. Construction and Building Materials, 2017, 136: 307-313. [61] SHEN P L, LU L N, HE Y J, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 118: 1-13. [62] YAZICI H, YARDIMCI M Y, AYDIN S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J]. Construction and Building Materials, 2009, 23(3): 1223-1231. [63] XU X, ZHANG R H, LIU Y H. Influence of curing regime on properties of reactive powder concrete containing waste steel fibers[J]. Construction and Building Materials, 2020, 232: 117129. [64] POURJAHANSHAHI A, MADANI H. Chloride diffusivity and mechanical performance of UHPC with hybrid fibers under heat treatment regime[J]. Materials Today Communications, 2021, 26: 102146. [65] PAL S C, MUKHERJEE A, PATHAK S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1481-1486. [66] KOVLER K, ROUSSEL N. Properties of fresh and hardened concrete[J]. Cement and Concrete Research, 2011, 41(7): 775-792. [67] CHEN T F, GAO X J, REN M. Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2018, 158: 864-872. [68] HASSAN A M T, JONES S W, MAHMUD G H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37: 874-882. [69] 龙广成,谢友均,王培铭,等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461. LONG G C, XIE Y J, WANG P M, et al. Properties and micro/mecrostructure of reactive powder concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(4): 456-461 (in Chinese). [70] 杨建森.混凝土中钙矾石作用的二重性[J].建筑材料学报,2001,4(4):362-366. YANG J S. Discussion on the duality of ettringite action in concrete[J]. Journal of Building Materials, 2001, 4(4): 362-366 (in Chinese). [71] 杨建森.混凝土中钙矾石作用的二重性及其发生条件[J].土木工程学报,2003,36(2):100-103. YANG J S. Discussion on the action duality of ettringite and it’s causing condition in concrete[J]. China Civil Engineering Journal, 2003, 36(2): 100-103 (in Chinese). [72] ALONSO C, FERNANDEZ L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J]. Journal of Materials Science, 2004, 39(9): 3015-3024. [73] ALARCON-RUIZ L, PLATRET G, MASSIEU E, et al. The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research, 2005, 35(3): 609-613. [74] CASTELLOTE M, ALONSO C, ANDRADE C, et al. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction[J]. Cement and Concrete Research, 2004, 34(9): 1633-1644. [75] GRATTAN-BELLEW P E. Microstructural investigation of deteriorated Portland cement concretes[J]. Construction and Building Materials, 1996, 10(1): 3-16. [76] HANDOO S K, AGARWAL S, AGARWAL S K. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures[J]. Cement and Concrete Research, 2002, 32(7): 1009-1018. [77] 黄政宇,胡功球.热养护过程中超高性能混凝土的收缩性能研究[J].材料导报,2016,30(4):115-120. HUANG Z Y, HU G Q. Research on the shrinkage performance of ultra high performance concrete during heat curing[J]. Materials Review, 2016, 30(4): 115-120 (in Chinese). [78] KORPA A, KOWALD T, TRETTIN R. Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods[J]. Cement and Concrete Research, 2009, 39(2): 69-76. [79] CWIRZEN A. The effect of the heat-treatment regime on the properties of reactive powder concrete[J]. Advances in Cement Research, 2007, 19(1): 25-33. [80] HEROLD G, MÜLLER H S. Measurment of porosity of ultra high strength fibre reinforced concrete[C]. International Symposium on Ultra High Performance Concrete. Kessel Germany, 2004: 685-694. [81] HEINZ D, LUDWIG H M. Heat treatment and the risk of DEF delayed ettringite formation in UHPC[C]. International Symposium on Ultra High Performance Concrete. Kessel Germany, 2004: 717-730. [82] 张 宇,金祖权,张云升.不同方式养护高强水泥基材料孔表面积分形维数与孔结构的关系[J].硅酸盐学报,2017,45(2):249-253. ZHANG Y, JIN Z Q, ZHANG Y S. Relationship between pore surface fractal dimension and pore structure of high strength cementitious materials cured by different methods[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 249-253 (in Chinese). [83] WANG W, LIU J, AGOSTINI F, et al. Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging[J]. Cement and Concrete Research, 2014, 55: 1-13. [84] LEUNG C K Y, LI V C. Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1333-1362. [85] BEGLARIGALE A, YAZICI H. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar[J]. Construction and Building Materials, 2015, 75: 255-265. [86] CHAN Y W, CHU S H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cement and Concrete Research, 2004, 34(7): 1167-1172. [87] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39. [88] 毛 军,张后禅.养护制度对活性粉末混凝土力学性能影响[J].低温建筑技术,2011,33(7):9-10. MAO J, ZHANG H S. Effect of curing system on mechanical properties of reactive powder concrete[J]. Low Temperature Architecture Technology, 2011, 33(7): 9-10 (in Chinese). [89] 张 胜,周锡玲,谢友均,等.养护制度对活性粉末混凝土强度及微观结构影响的研究[J].混凝土,2007(6):16-18. ZHANG S, ZHOU X L, XIE Y J, et al. Study on the effect of curing system on the strength and microstructure of reactive powder concrete[J]. Concrete, 2007(6): 16-18 (in Chinese). [90] 赖建中,孙 伟.生态型RPC材料的力学性能及微观机理研究[J].新型建筑材料,2009,36(12):20-23. LAI J Z, SUN W. Study on mechanical properties and micro-mechanism of ecological reactive powder concrete[J]. New Building Materials, 2009, 36(12): 20-23 (in Chinese). [91] MASSE S, ZANNI H, LECOURTIER J, et al. 29Si solid state NMR study of tricalcium silicate and cement hydration at high temperature[J]. Cement and Concrete Research, 1993, 23(5): 1169-1177. [92] HEINZ D, LUDWIG H M. Heat treatment and the risk of DEF delayed ettringite formation in UHPC[C]. Proceedings of the Proceedings of the International Symposium on UHPC, 2004, 717-730. [93] YAZICI H, YIĞITER H, KARABULUT A Ş, et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete[J]. Fuel, 2008, 87(12): 2401-2407. [94] ODLER I. Hydration, setting and hardening of Portland cement[M]//Lea’s Chemistry of Cement and Concrete. Amsterdam: Elsevier, 1998: 241-297. [95] GLASSER F P, HONG S Y. Thermal treatment of C-S-H gel at 1 bar H2O pressure up to 200 ℃[J]. Cement and Concrete Research, 2003, 33(2): 271-279. [96] YANG Q B, ZHANG S Q, HUANG S Y, et al. Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing[J]. Cement and Concrete Research, 2000, 30(12): 1993-1998. [97] CHEYREZY M, MARET V, FROUIN L. Microstructural analysis of RPC (reactive powder concrete)[J]. Cement and Concrete Research, 1995, 25(7): 1491-1500. [98] TAYLOR H F W. Cement chemistry[M]. London: Thomas Telford Publishing, 1997. [99] 罗玉萍,王立久.燃煤发电联产水泥技术研究进展[J].洁净煤技术,2006,12(4):35-38. LUO Y P, WANG L J. Review of study on the development of the technology of joint production of coal-burning electricity generation and cement manufacture[J]. Clean Coal Technology, 2006, 12(4): 35-38 (in Chinese). [100]李淑英.5 000 t/d熟料水泥企业能耗现状与节能潜力分析[J].节能,2020,39(3):78-80. LI S Y. Analysis on energy consumption status and energy conservation potential of 5 000 t/d clinker cement enterprise[J]. Energy Conservation, 2020, 39(3): 78-80 (in Chinese). [101]ZHANG P, GAO Z, WANG J, et al. Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review[J]. Journal of Cleaner Production, 2020, 270: 122389. |
[1] | ZHENG Juan, LI Hui, XU Mingfeng, ZHOU Jian, CHEN Zhifeng, ZHANG Zhenqiu, LIU Chengjian, ZHANG Jianbo. Effect of Seawater on Hydration Process and Mechanical Properties of High Belite Calcium Sulphoaluminate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2898-2904. |
[2] | YU Zihao, ZHANG Tongwei, CUI Kewang. Effect of Metakaolin on Early Mechanical Property and Microstructure of High Fluidity Steel Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2911-2920. |
[3] | HAN Jianjun, LIAO Dang, XI Zhuangmin, TANG Haichao, DAI Chongyang, LYU Yajun, MIAO Zhuang. Preparation and Properties of Ultra-High Performance Concrete for Radiation Protection of Magnetite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2930-2938. |
[4] | SHAO Huajian, LI Zongli, XIAO Shuaipeng, YAO Xiwang, ZHANG Ning. Mechanical Properties and Microstructure of Concrete under Drying-Wetting Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2948-2955. |
[5] | ZOU Min, SHEN Yu, LIU Juanhong. Review on Application of Steel Slag Powder in Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2964-2977. |
[6] | YANG Da, PANG Laixue, SONG Di, LU Mingyang, WANG Jiabin, GUAN Zebin. Reaction Mechanism of Fly Ash in Alkali-Activated Slag/Fly Ash System [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3005-3011. |
[7] | FENG Yuan, YU Rui, FAN Dingqiang, ZENG Min, HU Fangjie, SHUI Zhonghe, WANG Siyu, LIU Kangning, TAN Junhui, WANG Wufeng. Optimized Design of Ultra-High Performance Concrete Incorporating Steel Slag Based on Multiple Response Approach [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3029-3038. |
[8] | YANG Jinhong, LI Xiudi, WANG Qifan, LUO Yinjian. Research Progress on Dynamic Mechanical Properties and Anti-Explosion and Impact Resistance Performance of Engineered Cementitious Composite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2485-2496. |
[9] | QI Qiulin, ZHOU Jian, GE Zhongxi, LI Hui, XU Mingfeng, CHEN Zhifeng, ZHANG Zhenqiu, CUI Suping. Performance and Resistance Mechanism of Calcium Sulfoaluminate Cement Subjected to Acids [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2508-2514. |
[10] | WANG Yue, WANG Qin, ZHENG Haiyu, ZHAN Dafu. Influence of Dispersant on Pressure-Sensitive Properties of Graphene Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2515-2526. |
[11] | NI Xiucheng, CHENG Xiaowei, LI Junwu, WANG Jing, GAO Xianshu, ZHANG Gaoyin, ZHANG Chunmei, LIU Kaiqiang. Phase Composition Control and Mechanical Property of New Oil Well Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2534-2545. |
[12] | LIAN Songsong, MENG Tao, ZHAO Yuxi, LU Yuqi. Effects of Corrosion Inhibitors on Mechanical Properties and Corrosion Behavior of Recycled Mortar Mixed with Seawater [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2546-2553. |
[13] | ZHENG Hao, LIANG Yongning, ZHAN Jianwei, JI Tao. Effects of MgO and CaO on the Carbonization Resistance of Alkali-Activated Slag Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2564-2573. |
[14] | FAN Qi, DU Hongxiu, ZHAO Zhuang. Influences of Auxiliary Cementitious Materials on Strength and Technology of Prestressed High-Strength Concrete Pipe Piles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2591-2599. |
[15] | ZHENG Yun, QIAO Zhiwei, LIU Yanyou, NIU Bo, DUAN Wenjiu, ZHOU Guoxiang, YANG Zhihua. Finite Element Analysis on Effect of Needle Punching Parameter on Mechanical Properties and Thermal Conductivity of Basalt Fiber Preform [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2763-2769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||