[1] LI M, QIAN C X, SUN W. Mechanical properties of high-strength concrete after fire[J]. Cement and Concrete Research, 2004, 34(6): 1001-1005. [2] 余志武,丁发兴,罗建平.高温后不同类型混凝土力学性能试验研究[J].安全与环境学报,2005,5(5):1-6. YU Z W, DING F X, LUO J P. Experimental research on mechanical properties of different type of concrete after high temperature[J]. Journal of Safety and Environment, 2005, 5(5): 1-6 (in Chinese). [3] 司秀勇,潘慧敏.纤维对混凝土早期抗裂性能的影响[J].硅酸盐通报,2011,30(6):1425-1429. SI X Y, PAN H M. Influences of fiber on early crack resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(6): 1425-1429 (in Chinese). [4] 金凤杰,许金余,范飞林,等.钢纤维混凝土的高温动态强度特性[J].硅酸盐通报,2013,32(4):683-686. JIN F J, XU J Y, FAN F L, et al. Strength property of steel fiber reinforced concrete at elevated temperature[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(4): 683-686 (in Chinese). [5] 张 琦,高 雪,杜红秀.聚丙烯纤维对高强混凝土高温作用后氯离子渗透性的影响研究[J].混凝土,2015(3):87-89. ZHANG Q, GAO X, DU H X. Study on the effect of polypropylene fiber about chloride permeability of high performance concrete after high temperature[J]. Concrete, 2015(3): 87-89 (in Chinese). [6] 吴 佳,杜红秀,郝晓玉.聚丙烯纤维长径比对高温后高性能混凝土抗压强度的影响[J].混凝土,2016(3):65-67+75. WU J, DU H X, HAO X Y. Effect of the aspect ratio of polypropylene fiber on high strength concrete after exposure to high temperature[J]. Concrete, 2016(3): 65-67+75 (in Chinese). [7] 柳 献,袁 勇,叶 光,等.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008,41(6):61-68. LIU X, YUAN Y, YE G, et al. Investigation on the mechanism of explosive spalling of high performance concrete at elevated temperatures[J]. China Civil Engineering Journal, 2008, 41(6): 61-68 (in Chinese). [8] 牛旭婧,赵庆新,陈天红.聚丙烯粗纤维对高强混凝土高温后性能影响[J].硅酸盐通报,2013,32(12):2583-2588. NIU X J, ZHAO Q X, CHEN T H. Effect of polypropylene macro-fiber on properties of high-strength concrete after being exposed to high temperature[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2583-2588 (in Chinese). [9] 李地红,高 群,夏 娴,等.基于BP神经网络的混凝土综合性能预测[J].材料导报,2019,33(s2):317-320. LI D H, GAO Q, XIA X, et al. Prediction of comprehensive performance of concrete based on BP neural network[J]. Materials Reports, 2019, 33(s2): 317-320 (in Chinese). [10] HADZIMA-NYARKO M, NYARKO E K, LU H F, et al. Machine learning approaches for estimation of compressive strength of concrete[J]. The European Physical Journal Plus, 2020, 135(8): 682. [11] CHOPRA P, SHARMA R K, KUMAR M, et al. Comparison of machine learning techniques for the prediction of compressive strength of concrete[J]. Advances in Civil Engineering, 2018, 2018: 1-9. [12] TANYILDIZI H. Prediction of the strength properties of carbon fiber-reinforced lightweight concrete exposed to the high temperature using artificial neural network and support vector machine[J]. Advances in Civil Engineering, 2018, 2018: 1-10. [13] CHEN B T, CHANG T P, SHIH J Y, et al. Estimation of exposed temperature for fire-damaged concrete using support vector machine[J]. Computational Materials Science, 2009, 44(3): 913-920. [14] YANG H Y, DONG Y F. Modelling concrete strength using support vector machines[J]. Applied Mechanics and Materials, 2013, 438/439: 170-173. [15] 梁宁慧,曹郭俊,刘新荣,等.基于三点弯曲试验的聚丙烯纤维桥接应力研究[J].材料导报,2020,34(2):2153-2158. LIANG N H, CAO G J, LIU X R, et al. Study on bridging stress of polypropylene fiber based on three-point bending test[J]. Materials Reports, 2020, 34(2): 2153-2158 (in Chinese). [16] 梁宁慧,刘新荣,孙 霁.多尺度聚丙烯纤维混凝土单轴拉伸试验[J].重庆大学学报,2012,35(6):80-84+124. LIANG N H, LIU X R, SUN J. Uniaxial tensile test of multi-scale polypropylene fiber reinforced concrete[J]. Journal of Chongqing University, 2012, 35(6): 80-84+124 (in Chinese). [17] 张海燕,刘 岩,马丽萌,等.决策树算法的比较与应用研究[J].华北电力技术,2017(6):42-47. ZHANG H Y, LIU Y, MA L M, et al. Comparison and application of decision tree algorithm[J]. North China Electric Power, 2017(6): 42-47 (in Chinese). [18] 段小手.深入浅出Python机器学习[M].北京:清华大学出版社,2018. DUAN X S. Start with Python machine learning[M]. Beijing: Tsinghua University Press, 2018 (in Chinese). [19] 胡 鑫.基于人工神经网络的HPC强度预测[D].长沙:湖南大学, 2014. HU X. Prediction of high performance concrete strength based on artificial neural network[D]. Changsha: Hunan University, 2014 (in Chinese). [20] 周志华.机器学习[M].北京:清华大学出版社,2016. ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016 (in Chinese). [21] YAN K Z, SHI C J. Prediction of elastic modulus of normal and high strength concrete by support vector machine[J]. Construction and Building Materials, 2010, 24(8): 1479-1485. [22] 王继宗,倪宏光.基于BP神经网络的水泥抗压强度预测研究[J].硅酸盐学报,1999,27(4):3-5. WANG J Z, NI H G. Prediction of compressive strength of cement based on BP neural networks[J]. Journal of the Chinese Ceramic Society, 1999, 27(4): 3-5 (in Chinese). [23] 沈花玉,王兆霞,高成耀,等.BP神经网络隐含层单元数的确定[J].天津理工大学学报,2008,24(5):13-15. SHEN H Y, WANG Z X, GAO C Y, et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 2008, 24(5): 13-15 (in Chinese). |