[1] LI X Z, CHEN Z J, FAN X C, et al. Hydropower development situation and prospects in China[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 232-239. [2] 杨泽艳,周建平,王富强,等.中国混凝土面板堆石坝发展30年[J].水电与抽水蓄能,2017,3(1):1-5+12. YANG Z Y, ZHOU J P, WANG F Q, et al. The 30 years' development of concrete face rockfill dam in China[J]. Hydropower and Pumped Storage, 2017, 3(1): 1-5+12 (in Chinese). [3] WEN L, CHAI J, XU Z, et al. A statistical review of the behaviour of concrete-face rockfill dams based on case histories[J]. Géotechnique, 2018, 68(9): 749-771. [4] 许 鑫,苏仁庚,勾仕禧.天生桥一级水电站面板局部破损处理措施建议[J].水电与新能源,2018(5):61-65. XU X, SU R G, GOU S X. Treatment of local breakages of the concrete face in rockfill dam of Tianshengqiao-Ⅰ hydropower station[J]. Hydropower and New Energy, 2018(5): 61-65 (in Chinese). [5] ZHAO Z F, WANG K J, LANGE D A, et al. Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age[J]. Cement and Concrete Composites, 2019, 99: 191-202. [6] 樊启祥,李文伟,李新宇.低热硅酸盐水泥大坝混凝土施工关键技术研究[J].水力发电学报,2017,36(4):11-17. FAN Q X, LI W W, LI X Y. Key construction technologies of low heat Portland cement dam concrete[J]. Journal of Hydroelectric Engineering, 2017, 36(4): 11-17 (in Chinese). [7] HA J H, JUNG Y S, CHO Y G. Thermal crack control in mass concrete structure using an automated curing system[J]. Automation in Construction, 2014, 45: 16-24. [8] MO L W, DENG M, TANG M S, et al. MgO expansive cement and concrete in China: past, present and future[J]. Cement and Concrete Research, 2014, 57: 1-12. [9] 喻幼卿,汪金元,李定或,等.WHDF增强密实(抗裂)剂对改进面板砼抗裂性能的影响[J].水力发电学报,2006,25(4):112-116. YU Y Q, WANG J Y, LI D H, et al. The influence of WHDF crack resistance agent on improving crack resistance characteristics of concrete face-slab[J]. Journal of Hydroelectric Engineering, 2006, 25(4): 112-116 (in Chinese). [10] PLANK J, SAKAI E, MIAO C W, et al. Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability[J]. Cement and Concrete Research, 2015, 78: 81-99. [11] DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539. [12] LI G Y, WANG P M, ZHAO X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005, 43(6): 1239-1245. [13] RASHAD A M. Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials[J]. Construction and Building Materials, 2017, 153: 81-101. [14] XU S L, LIU J T, LI Q H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste[J]. Construction and Building Materials, 2015, 76: 16-23. [15] SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites, 2012, 34(10): 1104-1113. [16] 卢春鹏,刘杏红,赵志方,等.热膨胀系数时变性对混凝土温度应力仿真影响[J].浙江大学学报(工学版),2019,53(2):284-291. LU C P, LIU X H, ZHAO Z F, et al. Effect of time-varying thermal expansion coefficient on thermal stress simulation of concrete[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 284-291 (in Chinese). [17] YEON J H, CHOI S, WON M C. In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development[J]. Construction and Building Materials, 2013, 38: 306-315. [18] KADA H, LACHEMI M, PETROV N, et al. Determination of the coefficient of thermal expansion of high performance concrete from initial setting[J]. Materials and Structures, 2002, 35(1): 35-41. [19] 江晨晖,杨 杨,李 鹏,等.水泥砂浆的早龄期热膨胀系数的时变特征[J].硅酸盐学报,2013,41(5):605-611. JIANG C H, YANG Y, LI P, et al. Time dependence on thermal expansion behavior of cement mortar at early ages[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 605-611 (in Chinese). [20] NAIK T R, KRAUS R N, KUMAR R. Influence of types of coarse aggregates on the coefficient of thermal expansion of concrete[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 467-472. [21] WYRZYKOWSKI M, LURA P. Moisture dependence of thermal expansion in cement-based materials at early ages[J]. Cement and Concrete Research, 2013, 53: 25-35. [22] GRASLEY Z C, LANGE D A. Thermal dilation and internal relative humidity of hardened cement paste[J]. Materials and Structures, 2007, 40(3): 311-317. [23] 陈 波,丁建彤,蔡跃波,等.基于温度-应力试验的混凝土早龄期应变分离及热膨胀系数计算[J].水利学报,2016,47(4):560-565. CHEN B, DING J T, CAI Y B, et al. Strain separation and thermal coefficient calculation of early age concrete based on thermal stress test[J]. Journal of Hydraulic Engineering, 2016, 47(4): 560-565 (in Chinese). [24] 赵志方,张广博,施 韬.超高掺量粉煤灰大体积混凝土早龄期热膨胀系数[J].水力发电学报,2019,38(6):41-48. ZHAO Z F, ZHANG G B, SHI T. Thermal expansion coefficient of ultra high content fly ash mass concrete at early age[J]. Journal of Hydroelectric Engineering, 2019, 38(6): 41-48 (in Chinese). [25] TURCRY P, LOUKILI A, BARCELO L, et al. Can the maturity concept be used to separate the autogenous shrinkage and thermal deformation of a cement paste at early age?[J]. Cement and Concrete Research, 2002, 32(9): 1443-1450. [26] HANSEN P F, PEDERSEN E J. Maturity computer for controlled curing and hardening of concrete[J]. Nordisk Berong, 1977, 1(19): 19-34. [27] KWON Y K, BERBER S, TOMÁNEK D. Thermal contraction of carbon fullerenes and nanotubes[J]. Physical Review Letters, 2004, 92(1): 015901. [28] SABRI S, ILLSTON J M. Immediate and delayed thermal expansion of hardened cement paste[J]. Cement and Concrete Research, 1982, 12(2): 199-208. |