[1] Wang D Q. Effect of crystallization on the property of hard enamel coating on steel substrate[J]. Applied Surface Science, 2009, 255(8): 4640-4645. [2] 舒明勇,尹海英,刘光辉,等.选钛尾矿制备钒钛搪瓷及性能研究[J].表面技术,2016,45(10):13-19. [3] Yu Z D, Chen M H, Chen K, et al. Corrosion of enamel with and without CaF2 in molten aluminum at 750 ℃[J]. Corrosion Science, 2019, 148: 228-236. [4] Shen M L, Zhu S L, Wang F H. Cyclic oxidation behavior of glass-ceramic composite coatings on superalloy K38G at 1 100 ℃[J]. Thin Solid Films, 2011, 519(15): 4884-4888. [5] Chen M H, Shen M L, Zhu S L, et al. Preparation and thermal shock behavior at 1 000 ℃ of a glass-alumina-NiCrAlY tri-composite coating on K38G superalloy[J]. Surface and Coatings Technology, 2012, 206(8/9): 2566-2571. [6] Ko H, Lee S J, Oh J J, et al. Physiochemical effects of SiC and ZrO2 particle fillers on the properties of enamel coatings[J]. Coatings, 2020, 10(2): 121. [7] Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica[J]. Corrosion Science, 2017, 127: 201-212. [8] 舒明勇,尹海英,岳永双,等.白炭黑对搪瓷涂层耐酸性能的影响研究[J].无机盐工业,2017,49(2):31-34+63. [9] Zu Q, Zhang Y, Huang S L, et al. The structure and properties of SiO2-A12O3-MgO glass fibers-influence of MgO/(Li2O+B2O3)[J]. Fiber Glass, 2016(5): 1-10. [10] 唐 旋,马 倩,张兆明,等.Li2O质量分数对工业搪瓷耐酸性能的影响[J].东华大学学报(自然科学版),2019,45(3):396-400. [11] 许金沙,姚爱华,韩守鹏,等.釉料成分对搪玻璃层耐酸碱腐蚀性能的影响[J].化工装备技术,2019,40(3):28-32. [12] Chen K, Chen M H, Yu Z D, et al. Corrosion of SiO2-B2O3-Al2O3-CaF2-R2O (R=Na and K) enamels with different content of ZrO2 in H2SO4 and NaOH solutions[J]. Ceramics International, 2019, 45(12): 14958-14967. [13] Chen M H, Shen M L, Zhu S L, et al. Comparative study of interfacial reaction between superalloy substrate and glass coating with and without alumina particles incorporation[J]. Applied Surface Science, 2013, 271: 228-233. [14] Nguyen H H, Wan S H, Tieu K A, et al. Tribological behaviour of enamel coatings[J]. Wear, 2019, 426/427: 319-329. [15] Scrinzi E, Rossi S. The aesthetic and functional properties of enamel coatings on steel[J]. Materials and Design, 2010, 31(9): 4138-4146. [16] Zhang S, Ren Y H, Sun M R, et al. Effects of RE on the friction and abrasion character of porcelain enamel coating[J]. Advanced Materials Research, 2012, 538/539/540/541: 410-413. [17] Feng M, Chen M H, Yu Z D, et al. Crystallization and wear behavior of SiO2-Al2O3-ZrO2-Ba(Sr, Ca)O glass-ceramics added with Cr2O3 by different methods[J]. Ceramics International, 2019, 45(17): 22617-22624. [18] Rossi S, Zanella C, Sommerhuber R. Influence of mill additives on vitreous enamel properties[J]. Materials and Design, 2014, 55: 880-887. [19] Rossi S, Scrinzi E. Evaluation of the abrasion resistance of enamel coatings[J]. Chemical Engineering and Processing: Process Intensification, 2013, 68: 74-80. [20] Rossi S, Parziani N, Zanella C. Abrasion resistance of vitreous enamel coatings in function of frit composition and particles presence[J]. Wear, 2015, 332/333: 702-709. [21] Rossi S, Fedel M, Deflorian F, et al. Abrasion and chemical resistance of composite vitreous enamel coatings with hard particles[J]. Surface and Interface Analysis, 2016, 48(8): 827-837. [22] Rossi S, Calovi M, Velez D, et al. Microstructural analysis and surface modification of a vitreous enamel modified with corundum particles[J]. Advanced Engineering Materials, 2019, 21(8): 1900231. [23] Feng Q Y, Zhang Y Q, Dong Z H, et al. Preparation and wear behavior of enamel coating on Ti-6Al-4V ELI titanium alloy[C]//Advances in Materials Processing, 2018: 47-59. [24] Rossi S, Calovi M, Velez D, et al. Influence of addition of hard particles on the mechanical and chemical behavior of vitreous enamel[J]. Surface and Coatings Technology, 2019, 357: 69-77. [25] Chen K, Chen M H, Wang Q C, et al. Micro-alloys precipitation in NiO- and CoO-bearing enamel coatings and their effect on adherence of enamel/steel[J]. International Journal of Applied Glass Science, 2018, 9(1): 70-84. [26] Striepe S, Bornhöft H, Deubener J, et al. Microalloy precipitation at the glass-steel interface enabling adherence of porcelain enamel[J]. International Journal of Applied Ceramic Technology, 2016, 13(1): 191-199. [27] Chen K, Chen M H, Yu Z D, et al. Exploring the hindering mechanism of element Ti on the adherence of CoO-bearing one-coat enamel/steel[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 185-194. [28] Tao J H, Hu S B, Kong J H, et al. Effect of process temperature on the microstructures and properties of enamels coated on Ti-bearing substrate RT360[J]. Ceramics International, 2017, 43(8): 6276-6285. [29] 韩 涛,王 勇,陈玉华,等.氧化铈对玻璃涂层与金属基体密着性的影响[J].石油大学学报(自然科学版),2002,26(5):68-70+4. [30] Cha J, Kim J, Shin J, et al. Effect of nano-NiO additive on adhesion strength and bubble structure of vitreous enamels[J]. Journal of the Korean Physical Society, 2018, 72(7): 770-774. [31] 安志斌,张佩宇,沈晓骏,等.CeO2对W-2高温搪瓷涂层微观组织与抗热震性能的影响[J].热加工工艺,2016,45(20):140-142. [32] 李护林,王国强.液体火箭发动机涡轮燃气通道用搪瓷涂层性能改善研究[J].航天制造技术,2013(3):1-4. [33] 陈明辉.颗粒增强改善搪瓷涂层的抗热震性能机制研究[D].北京:中国科学院大学,2011. [34] 肖 峰,蔺虹宾,杜 娟,等.添加第二相颗粒和晶须对搪瓷复合涂层高温性能的影响[J].热加工工艺,2020,49(8):99-103+108. [35] Chen M H, Zhu S L, Shen M L, et al. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites[J]. Materials Science and Engineering: A, 2011, 528(3): 1360-1366. [36] 陈明辉,朱圣龙,王福会.金属-搪瓷复合涂层的多尺度结构设计以及高温防护性能研究[C].第十届全国表面工程大会暨第六届全国青年表面工程论坛,武汉,2014:117-121. [37] Chen M H, Zhu S L, Shen M L, et al. Thermophysical properties of alumina particle reinforced glass matrix composites[J]. International Journal of Applied Ceramic Technology, 2013, 10(2): 224-233. [38] Chen M H, Shen M L, Wang X, et al. Oxidation and thermal shock behavior of a glass-alumina composite coating on K38G superalloy at 1 000 ℃[J]. Journal of Materials Science and Technology, 2012, 28(5): 433-438. [39] 李烽杰,陈明辉,张哲铭,等.金属搪瓷高温防护涂层的制备及其抗热震行为研究[J].中国腐蚀与防护学报,2019,39(5):411-416. [40] 丰 敏,陈明辉,余中狄,等.多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J].金属学报,2017,53(12):1636-1644. [41] Chen M H, Zhu S L, Shen M L, et al. Thermophysical properties of alumina particle reinforced glass matrix composites[J]. International Journal of Applied Ceramic Technology, 2013, 10(2): 224-233. [42] Wu M Y, Chen M H, Zhu S L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation[J]. Surface and Coatings Technology, 2016, 285: 57-67. [43] Schaeffer H A. Oxygen and silicon diffusion-controlled processes in vitreous silica[J]. Journal of Non-Crystalline Solids, 1980, 38/39: 545-550. [44] Shen M L, Zhu S L, Chen M H, et al. The oxidation and oxygen permeation resistance of quartz particle-reinforced aluminosilicate glass coating on titanium alloy[J]. Journal of the American Ceramic Society, 2011, 94(8): 2436-2441. [45] Hunger A, Carl G, Gebhardt A, et al. Ultra-high thermal expansion glass-ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite[J]. Journal of Non-Crystalline Solids, 2008, 354(52/53/54): 5402-5407. [46] Xiao F, Lin H B, Chen H, et al. Effect of Cr2O3 on the microstructure and oxidation resistance of enamel coating with TC4 titanium alloy[J]. Materials Science, 2019, 26(2): 168-172. |