[1] GAO H H, LIAO Y Q, WANG Y Y, et al. Conductive superhydrophobic smart coatings based on spherical silver nanoparticles and waterborne polyurethane for flexible and wearable electronics[J]. ACS Applied Materials & Interfaces, 2024, 16(47): 65553-65564. [2] SUN Y, SU Y T, CHAI Z Y, et al. Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation[J]. Nature Communications, 2024, 15(1): 7290. [3] PANG B, QIAN J J, ZHANG Y S, et al. 5S multifunctional intelligent coating with superdurable, superhydrophobic, self-monitoring, self-heating, and self-healing properties for existing construction application[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29242-29254. [4] PANG B, JIN Z Q, ZHANG Y S, et al. Ultraductile cementitious structural health monitoring coating: waterborne polymer biomimetic muscle and polyhedral oligomeric silsesquioxane-assisted C-S-H dispersion[J]. Advanced Functional Materials, 2022, 32(51): 2208676. [5] 张立华, 胡曙光, 丁庆军. 多组分水泥基材料微观结构的研究[J]. 武汉理工大学学报, 2002, 24(6): 11-14. ZHANG L H, HU S G, DING Q J. The research on the microstructure and its development of cement-based systems[J]. Journal of Wuhan University of Technology, 2002, 24(6): 11-14 (in Chinese). [6] WANG D F, ZHANG Y S, PANG B, et al. Study on the optimal conductivity titration parameters for SO2-4 in cement-based materials[J]. Measurement, 2024, 237: 115277. [7] YOGESWARAN U, CHEN S M. Recent trends in the application of carbon nanotubes-polymer composite modified electrodes for biosensors: a review[J]. Analytical Letters, 2008, 41(2): 210-243. [8] 徐荣华, 闫嘉旺, 黄世峰, 等. 碳纤维-水泥基导电复合材料导电性能的研究[J]. 济南大学学报(自然科学版), 2004, 18(2): 103-105. XU R H, YAN J W, HUANG S F, et al. Research of electrical conductivity of carbon fiber cement-matrix composites (CFCC)[J]. Journal of Shandong Institute of Building Materials, 2004, 18(2): 103-105 (in Chinese). [9] RAMEZANI M, DEHGHANI A, SHERIF M M. Carbon nanotube reinforced cementitious composites: a comprehensive review[J]. Construction and Building Materials, 2022, 315: 125100. [10] ZHAN M M, PAN G H, ZHOU F F, et al. In situ-grown carbon nanotubes enhanced cement-based materials with multifunctionality[J]. Cement and Concrete Composites, 2020, 108: 103518. [11] PANG B, JIA Y T, PANG S D, et al. Research on the toughening mechanism of modified nano-silica and silane molecular cages in the multi-scale microfracture of cement-epoxy composite[J]. Cement and Concrete Composites, 2021, 119: 104027. [12] PANG B, JIN Z Q, ZHANG Y S, et al. Ultraductile waterborne epoxy-concrete composite repair material: epoxy-fiber synergistic effect on flexural and tensile performance[J]. Cement and Concrete Composites, 2022, 129: 104463. [13] ZHENG H P, PANG B, JIN Z Q, et al. Mechanical properties and microstructure of waterborne polyurethane-modified cement composites as concrete repair mortar[J]. Journal of Building Engineering, 2024, 84: 108394. [14] ZHENG H P, PANG B, JIN Z Q, et al. Durability enhancement of cement-based repair mortars through waterborne polyurethane modification: experimental characterization and molecular dynamics simulations[J]. Construction and Building Materials, 2024, 438: 137204. [15] 刘荣桂, 翁 煜, 李十泉, 等. 碳纳米纤维对CFRP温阻效应的影响分析[J]. 江苏大学学报(自然科学版), 2020, 41(5): 596-600. LIU R G, WENG Y, LI S Q, et al. Influence of carbon nanofiber on temperature resistance effect of carbon fiber reinforced polymer[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(5): 596-600 (in Chinese). [16] DEMIRCILIOĞLU E, TEOMETE E, SCHLANGEN E, et al. Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete[J]. Construction and Building Materials, 2019, 224: 420-427. [17] PANG B, ZHANG Y S, LIU G J, et al. Interface properties of nanosilica-modified waterborne epoxy cement repairing system[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21696-21711. [18] PANG B, JIA Y T, PANG S D, et al. The interpenetration polymer network in a cement paste-waterborne epoxy system[J]. Cement and Concrete Research, 2021, 139: 106236. [19] FU H, PANG B, WANG P G, et al. Microstructure and durability of rapid repair mortar with self-emulsifying waterborne epoxy polymer[J]. Materials Today Communications, 2024, 40: 109375. [20] HAN B G, ZHANG L Q, OU J P. Percolation and tunneling effects in carbon nanotube-cement composites: mechanisms and electrical properties[J]. Composites Part B: Engineering, 2017, 110: 108-117. [21] LI G Y, WANG P M, ZHAO X H. Electrical conductivity of cement-based composites: role of conductive pathways and tunneling[J]. Cement and Concrete Research, 2007, 37(3): 419-427. [22] ZHANG Y, PANG B, JIN Z, et al. Formation and properties of interpenetrating polymer networks in waterborne epoxy-cement composites[J]. Construction and Building Materials, 2023, 368: 130456. [23] WANG L, ASLANI F. Hydration and microstructure of cement composites with carbon nanotubes and C-S-H gel formation[J]. Cement and Concrete Composites, 2022, 127: 104398. [24] LIU Q, XU Q F, YU Y. Enhanced dispersion of carbon nanotubes in waterborne epoxy composites using surfactant-modified graphene[J]. Composites Science and Technology, 2018, 154: 153-162. [25] POLLEY M H, BOONSTRA B B S T. Carbon blacks for highly conductive rubber[J]. Rubber Chemistry and Technology, 1957, 30(1): 170-179. [26] SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803. [27] CLINGERMAN M L, KING J A, SCHULZ K H, et al. Evaluation of electrical conductivity models for conductive polymer composites[J]. Journal of Applied Polymer Science, 2002, 83(6): 1341-1356. [28] ZALLEN R. The physics of amorphous solids[M]. New York: John Wiley & Sons, 1998. |