BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 165-176.DOI: 10.16552/j.cnki.issn1001-1625.2025.0600
Previous Articles Next Articles
LIU Shiqi1(
), ZHOU Zichen1, HUANG Xiulin2(
), ZENG Ming1, ZHANG Bing1, ZHANG Jianfeng1, SHEN Chunhua3
Received:2025-06-19
Revised:2025-08-30
Online:2026-01-20
Published:2026-02-10
CLC Number:
LIU Shiqi, ZHOU Zichen, HUANG Xiulin, ZENG Ming, ZHANG Bing, ZHANG Jianfeng, SHEN Chunhua. Influence of Burnt Coal Cinder on Mechanics and Hydration Process of Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 165-176.
| Material | Mass fraction/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI | |
| Cement | 19.98 | 5.64 | 3.35 | 62.57 | 1.87 | 3.04 | 0.34 | 0.16 | 0.65 | 2.40 |
| BCC | 52.51 | 19.87 | 7.02 | 4.28 | 0.75 | 0.29 | 0.74 | 0.25 | 0.34 | 9.89 |
Table 1 Main chemical composition of raw materials
| Material | Mass fraction/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI | |
| Cement | 19.98 | 5.64 | 3.35 | 62.57 | 1.87 | 3.04 | 0.34 | 0.16 | 0.65 | 2.40 |
| BCC | 52.51 | 19.87 | 7.02 | 4.28 | 0.75 | 0.29 | 0.74 | 0.25 | 0.34 | 9.89 |
| Group | Cementing materials mass fraction/ % | Machine-made sand mass fraction/ % | Sand/binder ratio | Water/ binder ratio | ||||
|---|---|---|---|---|---|---|---|---|
| Cement | BCC-BM | 0.180~ <0.425 mm | 0.425~ <0.850 mm | 0.850~ <2.360 mm | 2.360~ <4.750 mm | |||
| BCC-BM10 | 90 | 10 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM20 | 80 | 20 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM30 | 70 | 30 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM40 | 60 | 40 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM50 | 50 | 50 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Basic | 100 | 0 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Reference | 70 | 30 (BCC) | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
Table 2 Mix ratio of mortar specimen
| Group | Cementing materials mass fraction/ % | Machine-made sand mass fraction/ % | Sand/binder ratio | Water/ binder ratio | ||||
|---|---|---|---|---|---|---|---|---|
| Cement | BCC-BM | 0.180~ <0.425 mm | 0.425~ <0.850 mm | 0.850~ <2.360 mm | 2.360~ <4.750 mm | |||
| BCC-BM10 | 90 | 10 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM20 | 80 | 20 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM30 | 70 | 30 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM40 | 60 | 40 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM50 | 50 | 50 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Basic | 100 | 0 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Reference | 70 | 30 (BCC) | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI |
|---|---|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 50.67 | 18.95 | 11.25 | 4.50 | 0.82 | 0.22 | 0.69 | 0.22 | 0.31 | 9.02 |
Table 3 Main chemical composition of BCC-BM
| Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI |
|---|---|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 50.67 | 18.95 | 11.25 | 4.50 | 0.82 | 0.22 | 0.69 | 0.22 | 0.31 | 9.02 |
| Group | Mass loss rate of C-S-H and AFt/% | Mass loss rate of Ca(OH)2/% | Mass loss rate of CaCO3/% | |||
|---|---|---|---|---|---|---|
| 3 d | 28 d | 3 d | 28 d | 3 d | 28 d | |
| Basic | 6.82 | 7.44 | 4.48 | 5.34 | 3.46 | 6.02 |
| BCC-BM10 | 5.98 | 8.09 | 3.86 | 4.39 | 4.77 | 6.25 |
| BCC-BM30 | 5.58 | 8.27 | 3.05 | 3.34 | 5.92 | 7.07 |
| BCC-BM50 | 4.70 | 7.37 | 2.58 | 2.57 | 5.28 | 7.23 |
Table 4 Thermal mass loss rate parameters of composite cementitious material
| Group | Mass loss rate of C-S-H and AFt/% | Mass loss rate of Ca(OH)2/% | Mass loss rate of CaCO3/% | |||
|---|---|---|---|---|---|---|
| 3 d | 28 d | 3 d | 28 d | 3 d | 28 d | |
| Basic | 6.82 | 7.44 | 4.48 | 5.34 | 3.46 | 6.02 |
| BCC-BM10 | 5.98 | 8.09 | 3.86 | 4.39 | 4.77 | 6.25 |
| BCC-BM30 | 5.58 | 8.27 | 3.05 | 3.34 | 5.92 | 7.07 |
| BCC-BM50 | 4.70 | 7.37 | 2.58 | 2.57 | 5.28 | 7.23 |
| [1] |
CHURKINA G, ORGANSCHI A, REYER C P O, et al. Buildings as a global carbon sink[J]. Nature Sustainability, 2020, 3(4): 269-276.
DOI |
| [2] |
RAVIKUMAR D, ZHANG D, KEOLEIAN G, et al. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit[J]. Nature Communications, 2021, 12: 855.
DOI PMID |
| [3] | 赵羽习, 张大伟, 夏 晋, 等. 混凝土结构全寿命减碳技术研究进展[J]. 建筑结构学报, 2024, 45(3): 1-14. |
|
ZHAO Y X, ZHANG D W, XIA J, et al. Research progress of life-cycle carbon emission reduction technologies for concrete structures[J]. Journal of Building Structures, 2024, 45(3): 1-14 (in Chinese).
DOI |
|
| [4] | 李丹, 郑伟, 刘彦伟. “双碳”背景下水泥行业发展之路[J]. 中国水泥, 2022, 5: 82-84. |
| LI D, ZHENG W, LIU Y W. The development path of cement industry under the background of “dual carbon”[J]. China Cement, 2022, 5: 82-84 (in Chinese). | |
| [5] | 杨向龙, 戈海猛. “双碳”背景下水泥行业碳减排策略探讨[J]. 资源节约与环保, 2024, 11: 130-133. |
| YANG X L, GE H M. Exploration of carbon emission reduction strategies in the cement industry under the background of “dual carbon”[J]. Resources Economization & Environmental Protection, 2024, 11: 130-133 (in Chinese). | |
| [6] | 王丽丽. 低碳在水泥行业高质量发展中的应用探析[J]. 中国水泥, 2024(增刊2): 53-54. |
| WANG L L. Exploration of the application of low carbon in high quality development of cement industry[J]. China Cement, 2024(supplement 2): 53-54 (in Chinese). | |
| [7] |
SILVEIRA V A L, DE RESENDE D S, SILVA BEZERRA A C. Sanitary ware waste in eco-friendly Portland blended cement: potential use as supplementary cementitious material[J]. Cement, 2025, 19: 100126.
DOI URL |
| [8] |
ZAJAC M, BREMEIER R, DEJA J, et al. Carbonation hardening of Portland cement with recycled supplementary cementitious materials[J]. Cement and Concrete Composites, 2025, 157: 105904.
DOI URL |
| [9] | 施麟芸, 匡敬忠, 刘松柏. 尾矿制备辅助胶凝材料的潜能与机制评述[J]. 建筑材料学报, 2024, 27(10): 922-930. |
| SHI L Y, KUANG J Z, LIU S B. Review on potential and mechanism of supplementary cementitious materials prepared by tailings[J]. Journal of Building Materials, 2024, 27(10): 922-930 (in Chinese). | |
| [10] | 徐美贞, 张道明. 辅助胶凝材料对再生混凝土性能影响的研究[J]. 齐齐哈尔大学学报(自然科学版), 2023, 39(6): 77-83+94. |
| XU M Z, ZHANG D M. Study on the influence of supplementary cementitious materials on the performance of recycled concrete[J]. Journal of Qiqihar University (Natural Science Edition), 2023, 39(6): 77-83+94 (in Chinese). | |
| [11] | 王朝蓬, 杨 洋, 刘宇鹏, 等. 煤矸石制备水泥辅助胶凝材料的应用研究[J]. 水泥工程, 2023(5): 1-4. |
| WANG Z P, YANG Y, LIU Y P, et al. Research on the application of coal gangue to prepare cement assisted cementitious materials[J]. Cement Engineering, 2023(5): 1-4 (in Chinese). | |
| [12] |
赵英良, 郑勇, 崔凯, 等. 高活性碳化钢渣对水泥基复合材料水化与力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1306-1327.
DOI |
|
ZHAO Y L, ZHENG Y, CUI K, et al. Effect of highly reactive carbonated steel slag on hydration and mechanical properties of cement composites[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(4): 1306-1327 (in Chinese).
DOI |
|
| [13] | 车志豪, 王家滨, 张凯峰, 等. 多元胶凝材料体系再生混凝土复合盐侵蚀耐久性退化规律[J]. 硅酸盐通报, 2023, 42(8): 2733-2742. |
| CHE Z H, WANG J B, ZHANG K F, et al. Durability degradation law of recycled aggregate concrete with multiple cementitious materials system subjected to compound salt erosion[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2733-2742 (in Chinese). | |
| [14] |
SMARZEWSKI P, BARNAT-HUNEK D. Mechanical and durability related properties of high performance concrete made with coal cinder and waste foundry sand[J]. Construction and Building Materials, 2016, 121: 9-17.
DOI URL |
| [15] |
HUANG M Y, BAO S X, ZHANG Y M, et al. Calcium-activated geopolymer ceramics: study of powder calcination and amorphous gel phases[J]. Journal of the American Ceramic Society, 2023, 106(6): 3964-3977.
DOI URL |
| [16] | 黎梦珂, 包申旭, 张一敏, 等. 燃煤渣基地聚物的制备及热活化效果[J]. 土木与环境工程学报, 2023, 41: 188-126. |
| LI M K, BAO S X, ZHANG Y M, et al. Research on preparation and thermal activation effect of geopolymers based on burnt coal cinder[J]. Journal of Civil and Environmental Engineering, 2023, 41: 188-126 (in Chinese). | |
| [17] |
黄梓谕, 丁之尧, 曹 丹, 等. 基于响应面法的多固废基地聚合物配比优化及其表征[J]. 硅酸盐通报, 2025, 44(2): 569-578.
DOI |
|
HUANG Z Y, DING Z Y, CAO D, et al. Ratio optimization and characterization of multi-solid waste-based geopolymer by response surface method[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 569-578 (in Chinese).
DOI |
|
| [18] | 赵灿濠, 李犇, 徐虎, 等. 耦合激发炉渣基水泥净浆力学性能研究[J]. 材料研究与应用, 2024, 18(5): 841⁃848. |
| ZHAO C H, LI B, XU H, et al. Study on the mechanical properties of slag-based cement paste under coupled excitation[J]. Materials Research and Application, 2024, 18(5): 841⁃848 (in Chinese). | |
| [19] | 樊金涛, 刘荣进, 陈 平, 等. 水淬锰渣-炉渣-石灰石复合微粉的活性试验[J]. 桂林理工大学学报, 2024, 44(1): 149-154. |
| FAN J T, LIU R J, CHEN P, et al. Activation of superfine-powder admixture of water-cooled manganese, slag-furnace and slag-limestone[J]. Journal of Guilin University of Technology, 2024, 44(1): 149-154 (in Chinese). | |
| [20] |
NIU H, KINNUNEN P, SREENIVASAN H, et al. Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential[J]. Minerals Engineering, 2020, 151: 106331.
DOI URL |
| [21] |
BOLDYREV V V. Mechanochemistry and mechanical activation of solids[J]. Russian Chemical Reviews, 2006, 75(3): 177-189.
DOI URL |
| [22] | 汪月琴, 刘 银, 张明旭, 等. 机械活化和静压对水镁石晶体结构的影响[J]. 中国科学技术大学学报, 2018, 48(7): 542-549+599. |
| WANG Y Q, LIU Y, ZHANG M X, et al. Effect ofmechanical activation and hydrostatic pressure on the crystal structure of brucite[J]. Journal of University of Science and Technology of China, 2018, 48(7): 542-549+599 (in Chinese). | |
| [23] |
SHI Y, LI Y, WANG H W. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: performance optimization, micro-mechanisms, and environmental properties[J]. Journal of Cleaner Production, 2024, 471: 143335.
DOI URL |
| [24] | 商效瑀, 史华彤, 龚 彬, 等. 基于秸秆固废资源化的水泥辅助胶凝材料制备与性能[J/OL]. 复合材料学报, 2024: 1-11 ( 2024-05-23) [ 2025-07-08]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240520005&dbname=CJFD&dbcode=CJFQ. |
| SHANG X Y, SHI H T, GONG B, et al. Preparation and properties of cement-aided cementitious material based on straw solid waste recycling[J/OL]. China Industrial Economics, 2024: 1-11 ( 2024-05-23)[ 2025-07-08]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240520005&dbname=CJFD&dbcode=CJFQ (in Chinese). | |
| [25] | 朱增超, 刘贤平, 水中和, 等. 固废基复合胶凝材料配比优化设计及协同效应研究[J]. 硅酸盐通报, 2023, 42(12): 4368-4377+4388. |
| ZHU Z C, LIU X P, SHUI Z H, et al. Mix ratio optimization design and synergistic effect study of multi-source solid waste binders[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4368-4377+4388 (in Chinese). | |
| [26] |
JAKOB C, JANSEN D, DENGLER J, et al. Controlling ettringite precipitation and rheological behavior in ordinary Portland cement paste by hydration control agent, temperature and mixing[J]. Cement and Concrete Research, 2023, 166: 107095.
DOI URL |
| [27] |
YUSUF M O. Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy[J]. Applied Sciences, 2023, 13(5): 3353.
DOI URL |
| [28] |
KUPWADE-PATIL K, PALKOVIC S D, BUMAJDAD A, et al. Use of silica fume and natural volcanic ash as a replacement to Portland cement: micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography[J]. Construction and Building Materials, 2018, 158: 574-590.
DOI URL |
| [29] | 周正宁, 张祖华, 邓毓琳, 等. CLDH对矿渣基地聚合物微观结构和性能的影响[J]. 硅酸盐学报, 2023, 51(9): 2138-2152. |
| ZHOU Z N, ZHANG Z H, DENG Y L, et al. Effect of CLDH on microstructure and properties of slag-based geopolymer[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2138-2152 (in Chinese). | |
| [30] |
SHAKOURI M, EXSTROM C L, RAMANATHAN S, et al. Pretreatment of corn stover ash to improve its effectiveness as a supplementary cementitious material in concrete[J]. Cement and Concrete Composites, 2020, 112: 103658.
DOI URL |
| [31] |
DE LIMA C P F, CORDEIRO G C. Evaluation of corn straw ash as supplementary cementitious material: effect of acid leaching on its pozzolanic activity[J]. Cement, 2021, 4: 100007.
DOI URL |
| [1] | AN Yangzhuang, YU Hai, LIU Changgeng. Compressive Damage of Basalt Fiber Reinforced Foam Concrete Based on Digital Image Correlation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 92-102. |
| [2] | HUANG Zhenhui, ZHAO Fei, CHANG Jun, LI Wenzheng, ZHOU Zhi. Mechanical Properties and Carbon Sequestration Capacity of CO2-Cured Recycled Aggregate Concrete Incorporating Coconut Shell Biochar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 156-164. |
| [3] | WANG Wensheng, LYU Hailong, MA Jiangtao, LIU Qi, NIE Xiaodong. Research Status on Basic Mechanical Properties and Engineering Applications of Coral Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 1-20. |
| [4] | TANG Xianyuan, REN Bowen, HU Bingqian, LIU Dacheng, FENG Meijie. Preparation and Formation Mechanism of Ultra-Early Strength Environmental-Friendly Steel Slag Micro Powder UHPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 191-201. |
| [5] | LIANG Xinxing, ZHANG Jingshen, WANG Chaosheng, LIANG Liguizu, LIU Ze, ZHANG Tong, ZHU Yingcan. Influence of Pre-Curing on Macroscopic Properties and Microstructure of Silicon Calcium Slag Composite Autoclaved Aerated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 40-46. |
| [6] | JIANG Demin, HU Siyu, KANG Honglong, LI Yujin, HOU Yuxiang. Effect of Modification on Properties of 3D Printing Rice Straw Fiber Cement-Based Composite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 47-57. |
| [7] | ZHANG Zhengqi, LIU Zhixin, RUI Zhaocheng, SHI Jierong, YANG Xinhong. Properties of Geopolymer-Stabilized Construction Solid Waste Recycled Aggregates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3347-3354. |
| [8] | WANG Qianqian, DAI Hang, WANG Lichuan, ZHANG Chunyu, LI Liping, WANG Haiyan, ZHANG Jingjing. Durability Study of Cement-Sodium Silicate Double Slurry Grout Consolidation Body under Accelerated Erosion by High Chloride Salts [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3137-3146. |
| [9] | YI Qigui, ZHAN Lyujin, LIU Xiang, XU Ruitian, LIANG Ying, CHEN Zongping. Sodium Bicarbonate Solution Carbonation: a Novel Method to Enhance Recycled Aggregate Concrete Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3227-3237. |
| [10] | ZHU Zilong, CHEN Peichong, LIAO Jie, YANG Xuan, ZHAO Deqiang, QU Liangchen, WANG Guiming, SHEN Weiguo. Effect of Grain Shape of Glutenite Manufactured Sand on Concrete Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3168-3177. |
| [11] | LIU Jiayu, GAO Yu, LIU Ze, WEN Shuaiyun, WANG Dongmin, WEI Peng, ZHANG Chunhui, ZHU Zhengjiang, LI Qingya. Properties and Microstructure of Cement Solidified Incineration Fly Ash-Cement Composites Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3272-3279. |
| [12] | ZHANG Xiaolong, WANG Wei, YAO Aijun, WANG Zhaohui, FENG Xihao, WANG Jie. Properties of Composite Cementitious Materials under Low Temperature and Low Pressure Curing Conditions [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3295-3304. |
| [13] | YU Jiexin, ZHU Yiting, ZHUANG Xu, CHEN Yushuang, ZHANG Guangda, XU Li. Mechanical Properties of Green Engineering Cementitious Composites with Tailing Sand as Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3337-3346. |
| [14] | HAO Hongyan, WU Yuesheng, XIE Jun, ZHANG Jihong, HAN Jianjun. Plasma Melting Fabricated High Strength Al2O3-La2O3 Binary Ceramic Microspheres [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3375-3382. |
| [15] | ZANG Xiangrong, YU Zhiqiang, LI Haiqing, TAN Huihui, LU Yanping, PENG Zihan. Effect of Hot Pressing Pressure on Microstructure and Properties of Silicon Nitride Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3383-3390. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||