[1] QIAN L P, XU L Y, ALREFAEI Y, et al. Artificial alkali-activated aggregates developed from wastes and by-products: a state-of-the-art review[J]. Resources, Conservation and Recycling, 2022, 177: 105971. [2] 施敏蛟, 林忠财. 人造骨料制造与养护工艺研究概述[J]. 混凝土, 2019(9): 56-61. SHI M J, LIN Z C. Review on the manufacturing and curing process of artificial aggregate[J]. Concrete, 2019(9): 56-61 (in Chinese). [3] KOEHNKEN L, RINTOUL M S, GOICHOT M, et al. Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research[J]. River Research and Applications, 2020, 36(3): 362-370. [4] TIAN K G, WANG Y S, HONG S X, et al. Alkali-activated artificial aggregates fabricated by red mud and fly ash: performance and microstructure[J]. Construction and Building Materials, 2021, 281: 122552. [5] AGRAWAL U S, WANJARI S P, NARESH D N. Impact of replacement of natural river sand with geopolymer fly ash sand on hardened properties of concrete[J]. Construction and Building Materials, 2019, 209: 499-507. [6] DONG B Q, CHEN C F, WEI G Q, et al. Fly ash-based artificial aggregates synthesized through alkali-activated cold-bonded pelletization technology[J]. Construction and Building Materials, 2022, 344: 128268. [7] 马彦涛, 房小健, 黄绪泉, 等. 矿渣-硅灰-磷石膏基骨料的制备及性能[J]. 化工环保, 2025, 45(2): 255-260. MA Y T, FANG X J, HUANG X Q, et al. Preparation and properties of slag-silica fume-phosphogypsum-based aggregate[J]. Environmental Protection of Chemical Industry, 2025, 45(2): 255-260 (in Chinese). [8] LIU G, GUAN B, LIANG Y S, et al. Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture[J]. Construction and Building Materials, 2022, 356: 129218. [9] DONG B Q, ZHANG L, LIU Y T, et al. The fate of phosphogypsum in limestone powder-C12A7 cementitious material system[J]. Construction and Building Materials, 2025, 464: 140205. [10] LIU Y T, DONG B Q, HONG S X, et al. Influence mechanisms of CaCO3/NaAlO2 ratios in carbonaluminate cementitious materials[J]. Journal of Materials Research and Technology, 2023, 25: 4700-4719. [11] MAJUMBAR A J, SINGH B, EDMONDS R N. Hydration of mixtures of C12A7 and granulated blastfurnace slag[J]. Cement and Concrete Research, 1989, 19(6): 848-856. [12] 陈 伟, 宋金源, 段 平, 等. 人造骨料表面改性改善混凝土界面过渡区性能研究[J]. 硅酸盐通报, 2023, 42(5): 1615-1622. CHEN W, SONG J Y, DUAN P, et al. Study on surface modification of artificial aggregate to improve performance of concrete interfacial transition zone[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1615-1622 (in Chinese). [13] HE G P, KONG D Y, CHEN X G, et al. Preparation of C-S-H gels by mechanochemistry and its influences on properties of super-retarded cement-based materials with sucrose[J]. Cement and Concrete Composites, 2024, 153: 105734. [14] WILBURN F W. Handbook of thermal analysis of construction materials[J]. Thermochimica Acta, 2003, 406(1/2): 249. [15] STEINER S, LOTHENBACH B, PROSKE T, et al. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite[J]. Cement and Concrete Research, 2020, 135: 106116. [16] 刘家文. 碳酸钙-铝酸盐矿物复合体系的水化行为与胶凝性能研究[D]. 重庆: 重庆大学, 2020: 26-27. LIU J W. Study on hydration behavior and gelling properties of calcium carbonate-aluminate mineral composite system[D]. Chongqing: Chongqing University, 2020: 26-27 (in Chinese). [17] WANG Y R, ZHANG J T, ZHANG Y H, et al. Influence of CaSO4 on hydration characteristics and microstructure of amorphous C12A7[J]. Journal of Non-Crystalline Solids, 2023, 619: 122560. [18] SCRIVENER K, SNELLINGS R, LOTHENBACH B. A practical guide to microstructural analysis of cementitious materials[M]. Boca Raton: CRC Press, 2018 [19] TU W L, FANG G H, DONG B Q, et al. Multiscale study of microstructural evolution in alkali-activated fly ash-slag paste at elevated temperatures[J]. Cement and Concrete Composites, 2023, 143: 105258. [20] RICHARDSON J M, BIERNACKI J J, STUTZMAN P E, et al. Stoichiometry of slag hydration with calcium hydroxide[J]. Journal of the American Ceramic Society, 2002, 85(4): 947-953. [21] LIBERTO T, DALCONI M C, SASSO G D, et al. Structure-function relationship during the early and long-term hydration of one-part alkali-activated slag[J]. Journal of the American Ceramic Society, 2023, 106(9): 5187-5202. [22] 马文青, 李子木, 李灿华, 等. 磷石膏制备免烧人造骨料及其性能[J]. 建筑材料学报, 2024, 27(4): 375-380. MA W Q, LI Z M, LI C H, et al. Preparation of calcined-free artificial aggregate from phosphogypsum and its performance[J]. Journal of Building Materials, 2024, 27(4): 375-380 (in Chinese). [23] CHU Z Y, GUO N S, WANG Z C, et al. Identification and mechanical properties of asphalt mastic-aggregate interface transition zone (ITZ) based on nanoindentation and AFM[J]. Construction and Building Materials, 2025, 461: 139898. [24] GHORBEL E, WARDEH G. Influence of recycled coarse aggregates incorporation on the fracture properties of concrete[J]. Construction and Building Materials, 2017, 154: 51-60. [25] 何小芳, 缪昌文, 张云升, 等. 水泥基材料界面过渡区结构及其性能的分析方法综述[J]. 混凝土, 2009(10): 19-23. HE X F, MIAO C W, ZHANG Y S, et al. Analysis methods about structure and its performance of interfacial transition zone(ITZ)[J]. Concrete, 2009(10): 19-23 (in Chinese). [26] 连 丽, 印海春, 廖卫东. 混凝土界面区的显微硬度研究[J]. 国外建材科技, 2005, 26(2): 8-11. LIAN L, YIN H C, LIAO W D. Study on microhardness of concrete interface area[J]. Science and Technology of Overseas Building Materials, 2005, 26(2): 8-11 (in Chinese). [27] HUO W W, ZHANG S P, ZHU Z D, et al. ITZs characterization in full-component geopolymer recycled concrete based on quantitative BSE-EDS images and nanoindentation techniques[J]. Construction and Building Materials, 2025, 465: 140249. [28] YANG Y Q, XIAO Y F, ZHOU W, et al. Strength analysis of geopolymer-rock interface: mohr-coulomb shear and interface transition zone (ITZ) nanoindentation testing[J]. Construction and Building Materials, 2025, 458: 139544. [29] NAIR B G, ZHAO Q, COOPER R F. Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications[J]. Journal of Materials Science, 2007, 42(9): 3083-3091. |