[1] 韦 敏, 刘士华, 王 榕. 钴掺杂二氧化锰类氧化物酶降解亚甲基蓝的研究[J]. 环境科学与技术, 2024, 47(9): 35-44. WEI M, LIU S H, WANG R. Degradation of cobalt-doped manganese dioxide (Co-MnO2)-like oxidative enzymes of methylene blue[J]. Environmental Science & Technology, 2024, 47(9): 35-44 (in Chinese). [2] KOOCHAKZADEH F, NOROUZBEIGI R, SHAYESTEH H. Statistically optimized sequential hydrothermal route for FeTiO3 surface modification: evaluation of hazardous cationic dyes adsorptive removal[J]. Environmental Science and Pollution Research, 2023, 30(7): 19167-19181. [3] 帅 政, 万星雨, 张艺臻, 等. ZIF-8/g-C3N4复合光催化剂降解盐酸四环素性能研究[J]. 环境科学与技术, 2024, 47(增刊2): 152-159. SHUAI Z, WAN X Y, ZHANG Y Z, et al. Photo-degradation efficiency of tetracycline hydrochloride by ZIF-8/g-C3N4 composite photocatalyst[J]. Environmental Science & Technology, 2024, 47(supplement 2): 152-159 (in Chinese). [4] LI J X, WANG Y H, WANG Y T, et al. MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction[J]. Nano Materials Science, 2023, 5(2): 237-245. [5] MOREIRA N F, SAMPAIO M, RIBEIRO A, et al. Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light[J]. Applied Catalysis B: Environmental, 2019, 248: 184-92. [6] WANG Y Y, ZHAO S, ZHANG Y W, et al. Facile synthesis of self-assembled g-C3N4 with abundant nitrogen defects for photocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10200-10210. [7] SONG Y L, LI Z Y, YANG C R, et al. Facile synthesis method of C self-doped g-C3N4 and its performance in photodegradation of sulfamethoxazole[J]. Separation and Purification Technology, 2024, 338: 126548. [8] 陈 璞, 欧晓霞, 赵 可, 等. In2S3/g-C3N4复合光催化剂的制备及其光催化降解四环素[J]. 硅酸盐通报, 2023, 42(1): 310-318. CHEN P, OU X X, ZHAO K, et al. Preparation of In2S3/g-C3N4 composite photocatalyst and its photocatalytic degradation of tetracycline[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 310-318 (in Chinese). [9] CONG X H, LI A M, GUO F, et al. Construction of CdS@g-C3N4 heterojunction photocatalyst for highly efficient degradation of gaseous toluene[J]. Science of the Total Environment, 2024, 913: 169777. [10] WANG X Y, LU M Y, MA J, et al. Synthesis of K-doped g-C3N4/carbon microsphere@graphene composite with high surface area for enhanced adsorption and visible photocatalytic degradation of tetracycline[J]. Separation and Purification Technology, 2019, 228: 115770. [11] GUO F, LI M Y, REN H J, et al. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light[J]. Separation and Purification Technology, 2019, 228: 115770. [12] 王智皓, 龙腾文, 冯建光, 等. SiC量子点敏化g-C3N4光阳极在光催化燃料电池中的应用[J]. 聊城大学学报(自然科学版), 2024, 37(4): 78-88. WANG Z H, LONG T W, FENG J G, et al. Application of SiC quantum dot sensitized g-C3N4 photoanode in photocatalytic fuel cells[J]. Journal of Liaocheng University (Natural Science Edition), 2024, 37(4): 78-88 (in Chinese). [13] MENG J Q, ZHANG X Y, LIU Y Q, et al. Engineering of graphitic carbon nitride with simultaneous potassium doping sites and nitrogen defects for notably enhanced photocatalytic oxidation performance[J]. Science of the Total Environment, 2021, 796: 148946. [14] LIANG L, SHI L, WANG F X, et al. Synthesis and photo-catalytic activity of porous g-C3N4: promotion effect of nitrogen vacancy in H2 evolution and pollutant degradation reactions[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16315-16326. [15] HUANG H W, XIAO K, TIAN N, et al. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J]. Journal of Materials Chemistry A, 2017, 5(33): 17452-17463. [16] WEI Z, LIU M L, ZHANG Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers[J]. Energy & Environmental Science, 2018, 11(9): 2581-2589. [17] ZHENG Y, LIN L H, WANG B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie (International Edition), 2015, 54(44): 12868-12884. [18] 顾 杰, 李双硕, 崔天伊, 等. 生物质炭掺杂BiOBr的制备及其光催化性能研究[J]. 聊城大学学报(自然科学版), 2025, 38(1): 68-75. GU J, LI S S, CUI T Y, et al. Preparation of biomass charcoal doped BiOBr and its photocatalytic performance[J]. Journal of Liaocheng University (Natural Science Edition), 2025, 38(1): 68-75 (in Chinese). [19] CAO S W, LOW J, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. [20] 张 蓉, 柳 璐, 马 飞, 等. 过渡金属/氮掺杂石墨催化剂的制备及电催化氧还原[J]. 分子催化, 2014, 28(6): 553-563. ZHANG R, LIU L, MA F, et al. Preparation and electrocatalytic activity of transition metal/nitrogen doped carbon catalysts for oxygen reduction reaction[J]. Journal of Molecular Catalysis, 2014, 28(6): 553-563 (in Chinese). [21] MA J, ZHOU W, TAN X, et al. Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation[J]. Nanotechnology, 2018, 29(21): 215706. [22] CHOU Y C, SHAO C L, LI X H, et al. BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property[J]. Applied Surface Science, 2013, 285(part B): 509-516. [23] KHAN A A, TAHIR M. Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light[J]. Applied Catalysis B: Environmental, 2021, 285: 119777. [24] 袁 浩, 孙鑫海, 李瑞广, 等. 碳点/铁酸镍复合光催化剂的宽光谱芬顿降解四环素研究[J]. 聊城大学学报(自然科学版), 2024, 37(2): 69-79. YUAN H, SUN X H, LI R G, et al. Achieving high-efficient broad spectrum driven photo-Fenton degradation of tetracycline via carbon dots modified NiFe2O4 nanoparticles[J]. Journal of Liaocheng University (Natural Science Edition), 2024, 37(2): 69-79 (in Chinese). [25] RAI R, TRILOKI T, SINGH B K. X-ray diffraction line profile analysis of KBr thin films[J]. Applied Physics A, 2016, 122(8): 774. [26] LI F Y, LIN M X. Synthesis of biochar-supported K-doped g-C3N4 photocatalyst for enhancing the polycyclic aromatic hydrocarbon degradation activity[J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 2065. [27] 吴 昊, 夏存杰, 韦梦兰, 等. Cu掺杂Bi2O2S光催化剂的制备及其性能研究[J/OL]. 工业水处理, 1-19 (2024-12-17) [2025-05-26]. https://doi.org/10.19965/j.cnki.iwt2024-0725. WU H, XIA C J, WEI M L, et al. Preparation and properties of Bi2O2S photocatalyst by Cu doping[J/OL]. Industrial Water Treatment, 1-19 (2024-12-17) [2025-05-26]. https://doi.org/10.19965/j.cnki.iwt2024-0725 (in Chinese). |