BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (10): 3665-3675.DOI: 10.16552/j.cnki.issn1001-1625.2025.0404
• Solid Waste and Eco-Materials • Previous Articles Next Articles
TAN Xiao, ZHOU Dongsheng, WANG Dong, YANG Wu, ZHOU Jiang, LIU Chunyu
Received:2025-04-17
Revised:2025-06-18
Online:2025-10-15
Published:2025-11-03
CLC Number:
TAN Xiao, ZHOU Dongsheng, WANG Dong, YANG Wu, ZHOU Jiang, LIU Chunyu. Review on Cement Solidification Treatment and Disposal Techniques of Mixed Wastes from Pb-Containing Heavy Metal Radioactive Concentrate[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3665-3675.
| [1] ALEMBERTI A. The lead fast reactor: an opportunity for the future?[J]. Engineering, 2016, 2(1): 59-62. [2] 闫寿军, 赵 远, 梁和乐, 等. 俄罗斯铅冷快堆发展概述[J]. 国外核新闻, 2019(9): 24-27. YAN S J, ZHAO Y, LIANG H Y, et al. Overview of Russian lead-cooled fast reactor development[J]. Foreign Nuclear News, 2019(9): 24-27 (in Chinese). [3] 陶舒畅, 赖建永, 秦 婧, 等. 美国铅冷快堆研究进展[J]. 科技视界, 2020(17): 231-234. TAO S C, LAI J Y, QIN J, et al. Research progress of lead-cooled fast reactor in the United States[J]. Science & Technology Vision, 2020(17): 231-234 (in Chinese). [4] LOEWEN E P, TOKUHIRO A T. Status of research and development of the lead-alloy-cooled fast reactor[J]. Journal of Nuclear Science and Technology, 2003, 40(8): 614-627. [5] ZAFAR S, FATIMA S, ASAD F, et al. Combating lead (Pb) contamination: integrating biomonitoring, advanced detection, and remediation for environmental and public health[J]. Water, Air & Soil Pollution, 2024, 236(1): 8. [6] CONNER J R, HOEFFNER S L. A critical review of stabilization/solidification technology[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4): 397-462. [7] DONG D, WANG Z Q, GUAN J Y, et al. Research on safe disposal technology and progress of radioactive nuclear waste[J]. Nuclear Engineering and Design, 2025, 435: 113934. [8] CHE C, TENG Y, GUI Q. Research and application status of radioactive waste solidification[J]. Materials Review, 2006, 20(2): 94-97+101. [9] LI J F, CHEN L, WANG J L. Solidification of radioactive wastes by cement-based materials[J]. Progress in Nuclear Energy, 2021, 141: 103957. [10] LUHAR I, LUHAR S, AL BAKRI ABDULLAH M M, et al. Solidification/stabilization technology for radioactive wastes using cement: an appraisal[J]. Materials, 2023, 16(3): 954. [11] 李俊峰, 王建龙. 放射性废离子交换树脂的特种水泥固化技术进展[J]. 辐射防护, 2006, 26(2): 107-112. LI J F, WANG J L. Technologlcal status of solidification of specific cement with spent radioactive ion exchange resin[J]. Radiation Protection, 2006, 26(2): 107-112 (in Chinese). [12] 孙寿华, 冉洺东, 林 力, 等. 放射性废液处理技术的现状与展望[J]. 核动力工程, 2019, 40(6): 1-6. SUN S H, RAN M D, LIN L, et al. Present situation and prospect of radioactive waste liquid treatment technology[J]. Nuclear Power Engineering, 2019, 40(6): 1-6 (in Chinese). [13] PENZIN R A, MILYUTIN V V, SVITTSOV A A. Promising technologies for liquid radwaste management in the nuclear industry[J]. Atomic Energy, 2022, 132(1): 24-26. [14] FABIAN M, TOLNAI I, KIS Z, et al. Characterization of simulated liquid radioactive waste in a new type of cement mixture[J]. ACS Omega, 2022, 7(41): 36108-36116. [15] 姜 毅, 余 刃. 放射性蒸残液水泥固化配方研究[J]. 核动力工程, 2015, 36(6): 171-174. JIANG Y, YU R. Research on proportion for radioactive concentrate liquid waste cementation[J]. Nuclear Power Engineering, 2015, 36(6): 171-174 (in Chinese). [16] 赵 宏. 放射性废物的水泥固化技术[J]. 中国科技信息, 2012(11): 66. ZHAO H. Cement solidification technology of radioactive waste[J]. China Science and Technology Information, 2012(11): 66 (in Chinese). [17] ZHENG Z, LI Y X, ZHANG Z H, et al. The impacts of sodium nitrate on hydration and microstructure of Portland cement and the leaching behavior of Sr2+[J]. Journal of Hazardous Materials, 2020, 388: 121805. [18] 环境保护部, 国家质量监督检验检疫总局. 低、中水平放射性废物固化体性能要求-水泥固化体: GB 14569.1—2011[S]. 北京: 中国环境科学出版社, 2011. Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. Performance requirements for solidified low and intermediate level radioactive waste-cement solidified body: GB 14569.1—2011[S]. Beijing: China Environmental Science Press, 2011 (in Chinese). [19] 陈 敏, 陆春海, 方祥洪. 放射性废物水泥固化及其研究进展[C]//中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集第6册(核化工分卷、核化学与放射化学分卷、辐射物理分卷). 威海, 2017: 203-209. CHEN M, LU C H, FANG X H. Cement solidification of radioactive waste and its research progress [C]//Progress Report on China's Nuclear Science and Technology (Volume 5) — Proceedings of the 2017 Annual Academic Conference of the Chinese Nuclear Society, Volume 6 (Nuclear Chemical Engineering, Nuclear Chemistry and Radiochemistry, Radiation Physics). Weihai, 2017: 203-209 (in Chinese). [20] 余达万. 放射性浓缩废液水泥固化研究[D]. 镇江: 江苏大学, 2017. YU D W. Study on cement solidification of radioactive concentrated waste liquid[D]. Zhenjiang: Jiangsu University, 2017 (in Chinese). [21] 罗劲松, 闫晓俊, 陈洪春, 等. 核电厂含硼浓缩液水泥固化配方改进研究[J]. 辐射防护, 2021, 41(3): 254-259. LUO J S, YAN X J, CHEN H C, et al. Study on formula improvement of cement solidification of boron concentrates from NPP[J]. Radiation Protection, 2021, 41(3): 254-259 (in Chinese). [22] RAHMAN R O, ZAKI A A, EL-KAMASH A M. Modeling the long-term leaching behavior of 137Cs, 60Co, and 152,154Eu radionuclides from cement-clay matrices[J]. Journal of Hazardous Materials, 2007, 145(3): 372-380. [23] SUN Q N, HU J, WANG J L. Optimization of composite admixtures used in cementation formula for radioactive evaporator concentrates[J]. Progress in Nuclear Energy, 2014, 70: 1-5. [24] ZATLOUKALOVÁ J, ZATLOUKAL J, HRANÍČEK J, et al. Study on the properties of cement composites for immobilization of evaporator concentrates[J]. Progress in Nuclear Energy, 2021, 140: 103919. [25] LEE H K, SHON J S, JANG W H, et al. Derivation of operating conditions for the Jordan cement solidification process and evaluation of disposability of the cement waste form produced in the process[J]. Annals of Nuclear Energy, 2023, 182: 109597. [26] 张庆瑜. 核电厂放射性浓缩液水泥固化处理技术研究[D]. 南宁: 广西大学, 2024. ZHANG Q Y. Research on radioactive concentrate liquid cement cementation treatment technology for nuclear power plants[D]. Nanning: Guangxi University, 2024 (in Chinese). [27] 李洪辉, 杨卫兵, 冯文东, 等. 模拟浓缩液水泥固化体配方研制及性能检测[J]. 水泥, 2015(11): 5-7. LI H H, YANG W B, FENG W D, et al. Study on proportioning of simulated concentrate liquid cement solidified radioactive waste form and its properties test[J]. Cement, 2015(11): 5-7 (in Chinese). [28] ZATLOUKALOVÁ J, KOKEŠ R, ZATLOUKAL J. Volume changes of cement composites for evaporator concentrates immobilization[C]//Special Concrete and Composites 2020: 17th International Conference, Skalsky Dvůr, Czech Republic. AIP Publishing, 2021: 020023. [29] KONONENKO O A, MAKARENKOV V I. Gibbsite- and kuzelite-based matrix for the preservation of radioactive aqueous sodium nitrate concentrates[J]. Atomic Energy, 2023, 134(5/6): 322-331. [30] KOZAKI T, SAWAGUCHI T, FUJISHIMA A, et al. Effect of exchangeable cations on apparent diffusion of Ca2+ ions in Na- and Ca-montmorillonite mixtures[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(6/7/8): 254-258. [31] 韩玲玲, 曹惠昌, 代淑娟, 等. 重金属污染现状及治理技术研究进展[J]. 有色矿冶, 2011, 27(3): 94-97. HAN L L, CAO H C, DAI S J, et al. Heavy metal pollution and development of treatment technology research[J]. Non-Ferrous Mining and Metallurgy, 2011, 27(3): 94-97 (in Chinese). [32] 国家环境保护总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3—2007[S]. 北京: 中国环境出版社, 2007. Ministry of Environmental Protection of the People's Republic of China. Identification standard for hazardous waste-identification of leaching toxicity: GB 5085.3—2007[S]. Beijing: China Environmental Science Press, 2007 (in Chinese). [33] 生态环境部, 国家市场监督管理总局. 危险废物填埋污染控制标准: GB 18598—2019[S]. 北京: 中国环境出版社, 2019. Ministry of Ecology and Environment, State Administration for Market Regulation. Pollution control standard for hazardous waste landfill: GB 18598—2019[S]. Beijing: China Environmental Science Press, 2019 (in Chinese). [34] 曾映达, 程银汉, 瞿广飞, 等. 固体废物中重金属的固化/稳定化技术研究进展[J]. 环境化学, 2023, 42(6): 2032-2047. ZENG Y D, CHENG Y H, QU G F, et al. Review on solidification/stabilization of heavy metals in solid waste[J]. Environmental Chemistry, 2023, 42(6): 2032-2047 (in Chinese). [35] 庞 博, 赵源鸿. 磷酸镁水泥固化飞灰重金属离子研究进展[J]. 江西建材, 2023(12): 6-7+10. PANG B, ZHAO Y H. Research progress on heavy metal ions in fly ash solidified with magnesium phosphate cement[J]. Jiangxi Building Materials, 2023(12): 6-7+10 (in Chinese). [36] KADHEM N Q, HUSSAIN B A, HUSSEIN I F. Heavy metals leaching characteristics assessment of medical ash wastes through cement solidification/stabilization treatment processes[J]. Pollution, 2024, 10(4): 1227. [37] WANG Y G, HAN F L, MU J Q. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers[J]. Construction and Building Materials, 2018, 160: 818-827. [38] 慕宗宇, 杨玉飞, 王 菲, 等. 飞灰哌嗪类螯合剂固化/稳定化体中重金属释放机理[J]. 环境工程技术学报, 2024, 14(1): 174-183. MU Z Y, YANG Y F, WANG F, et al. Mechanism of release of heavy metals in solidified/stabilized bodies of fly ash piperazine chelating agents[J]. Journal of Environmental Engineering Technology, 2024, 14(1): 174-183 (in Chinese). [39] NAVARRO-BLASCO I, DURAN A, SIRERA R, et al. Solidification/stabilization of toxic metals in calcium aluminate cement matrices[J]. Journal of Hazardous Materials, 2013, 260: 89-103. [40] XU J Z, ZHOU Y L, CHANG Q, et al. Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers[J]. Materials Letters, 2006, 60(6): 820-822. [41] JANUSA M A, CHAMPAGNE C A, FANGUY J C, et al. Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement[J]. Microchemical Journal, 2000, 65(3): 255-259. [42] LIU S W, CAO X, YANG W C, et al. Preparation of magnesium potassium phosphate cement from municipal solid waste incineration fly ash and lead slag co-blended: Ca-induced crystal reconstruction process and Pb-Cl synergistic solidification mechanism[J]. Journal of Hazardous Materials, 2023, 457: 131690. [43] 贾世波, 张学霞, 李媛媛. 碱激发水泥固化稳定重金属污染土的强度和浸出特性试验研究[J]. 工业建筑, 2019, 49(8): 142-146. JIA S B, ZHANG X X, LI Y Y. Strength and leachability properties of heavy metal contaminated soil stabilized by alkali-activated cement[J]. Industrial Construction, 2019, 49(8): 142-146 (in Chinese). [44] ZOU Z J, QIN Y H, ZHANG T S, et al. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: an experimental study[J]. Journal of Environmental Management, 2023, 348: 119315. [45] LUO Z, MA B, YU Z, et al. Influence of heavy metal Pb on hydration and leaching toxicity of sulphoaluminate cement[J]. Journal of Qingdao Technological University, 2009, 30(4): 123-126. [46] TIAN Q Z, SASAKI K. Structural characterizations of fly ash-based geopolymer after adsorption of various metal ions[J]. Environmental Technology, 2021, 42(6): 941-951. [47] 孟 芹, 廖梓珺, 李云涛. 磷酸镁水泥的研究现状及发展趋势[J]. 硅酸盐通报, 2017, 36(4): 1245-1253. MENG Q, LIAO Z J, LI Y T. Research status and development trend of magnesium phosphate cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1245-1253 (in Chinese). [48] COLLIER N C, MILESTONE N B, TRAVIS K P. A review of potential cementing systems for sealing and support matrices in deep borehole disposal of radioactive waste[J]. Energies, 2019, 12(12): 2393. [49] CHEN L, LI J F, WANG J L. Various additives for improving the performances of solidified forms of radioactive wastes by cementation technology: recent advances and perspectives[J]. Nuclear Engineering and Design, 2024, 429: 113595. [50] 万 磊, 张 智, 宋华松, 等. 干湿循环对碱激发材料固化细铁尾矿砂强度特性的影响分析[J]. 硅酸盐通报, 2020, 39(7): 2223-2231. WAN L, ZHANG Z, SONG H S, et al. Effect of drying and wetting cycles on strength characteristic of alkali-activated materials solidified fine iron tailings sand[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2223-2231 (in Chinese). [51] 杨振甲, 何 猛, 吴 杨, 等. 矿渣-粉煤灰地聚物固化淤泥力学性能和路用性能研究[J]. 硅酸盐通报, 2022, 41(2): 693-703+724. YANG Z J, HE M, WU Y, et al. Mechanical properties and road performance of slag-fly ash geopolymer stabilized sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693-703+724 (in Chinese). [52] CLAVERIE M, GARCIA J, PREVOST T, et al. Inorganic and hybrid (organic-inorganic) lamellar materials for heavy metals and radionuclides capture in energy wastes management-a review[J]. Materials, 2019, 12(9): 1399. [53] LIU Y L, LI D Y, CAO P, et al. Advances in MXene-based composite materials for efficient removal of radioactive nuclides and heavy metal ions[J]. Materials Today Physics, 2024, 44: 101444. [54] GROMOV V F, IKIM M I, GERASIMOV G N, et al. Crown ethers: selective sorbents of radioactive and heavy metals[J]. Russian Journal of Physical Chemistry B, 2021, 15(1): 140-152. [55] 生态环境部. 低、中水平放射性固体废物近地表处置安全规定: GB 9132—2018[S]. 北京: 中国环境科学出版社, 2018. Ministry of Ecology and Environment. Safety regulations for near-surface disposal of low and intermediate-level radioactive solid waste: GB 9132—2018[S]. Beijing: China Environmental Science Press, 2018 (in Chinese). [56] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 低、中水平放射性废物固化体标准浸出试验方法: GB/T 7023—2011[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard leaching test methods for solidified low and intermediate-level radioactive waste: GB/T 7023—2011[S]. Beijing: China Standards Press, 2012 (in Chinese). [57] 肖开乾, 周 莹, 穆 松, 等. 混凝土溶蚀加速实验方法综述[J]. 混凝土, 2020(3): 13-16+19. XIAO K Q, ZHOU Y, MU S, et al. Summary of experimental methods for accelerated concrete corrosion[J]. Concrete, 2020(3): 13-16+19 (in Chinese). |
| [1] | DONG Faxin, XU Zifan, WANG Junfeng, LU Liulei, YE Weikai, SHANG Chunjing. Experimental Study on Solidification of Municipal Solid Waste Incineration Fly Ash Using High-Strength Sulfoaluminate Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3280-3287. |
| [2] | LI Kangli, LU Xiaolei, ZHU Jiang, JIANG Congcong, ZHANG Lina, CHENG Xin. Leaching and Solidification/Stabilization of Heavy Metal Ions in Industrial Solid Wastes [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2856-2872. |
| [3] | WU Zhihong, PENG Jingzhi, PAN Yuexin, YU Gang, REN Shufang, XU Hongjin. Research Progress of Copper Tailings in Cement Production and Concrete Application [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2172-2180. |
| [4] | YE Weikai, SHENG Guodong, LU Liulei, ZHANG Jinhong, ZHANG Zongyang, DONG Faxin, LIU Mingwang, WANG Junfeng, LUO Qi. Effect of Solid Activator on One-Part Alkali-Activated Slag-Fly Ash Composite Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1779-1787. |
| [5] | GUO Zhengwang, XIAO Haiping, ZHANG Xuqin, LI Yan, LI Yu. Evolution of Inorganic Mineral Phases and Heavy Metal Solidification Mechanisms in Ceramic Production Process from Low-Carbon Slag Solid Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1566-1573. |
| [6] | CHEN Qinyuan, YAN Yifan, ZHAO Zhenhua, ZHANG Aiguo, GUAN Qiang, HE Yue. Research Progress on Factors Influencing Heavy Metal Solidification Effect and Product Performance of Solid Waste-Based Ceramsite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 515-530. |
| [7] | GAO Yunnan, ZHANG Lingshuai, HOU Li, ZHOU Yongxiang. Solidification of Sand Washing Residue Mud byUsing Multivariant Solid Waste Cementitious Materials at 20 and 40 ℃ [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 590-601. |
| [8] | KE Guopeng, XU Hao, YANG Ruzhu, CHEN Zhibin, DONG Shuyu, ZHUANG Guanzheng, ZENG Wu, LI Yaohuang, LIU Jingyong, ZHONG Sheng, YANG Zuoyi, LI Lei. Process, Heavy Metal Transformation Behavior of Typical Solid Waste-Based Sintering Ceramsite and Its Application Status Analysis [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2912-2923. |
| [9] | SHI Yaoming, LI Dongwei. Immobilization of Electroplating Sludge by Lead-Zinc Smelting Slag-Based Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2961-2974. |
| [10] | YIN Yuan, LIN Kang, ZENG Weixin, CHENG Shufan. Experimental Study on Road Performance of Weak Alkali-Activated Phosphorus Slag-Cement Composite Filler [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2602-2611. |
| [11] | WAN Xindi, ZHANG Maoliang, SU Genhua, LUO Zhongtao, LIU Xiaohai. Effects of Combustible Components of Coal Gangue on Properties of Lead-Zinc Tailing Ceramsite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4434-4441. |
| [12] | WANG Sheng, MA Hongrui, JI Luxin, MA Zheyang, CUI Jiaming, BA Mingfang, SHAO Nianping. Effect of Pre-Wetting Heavy Metal Sludge Sintered Pottery Sand on Performance of Ultra-High Strength Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4442-4451. |
| [13] | CAO Jing, ZHANG Xingwen, LEI Shuyu, LI Yuhong, CHENG Yun. Permeability of Peat Soil Solidified by Composite Cement Solidification Agent [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3561-3571. |
| [14] | LUO Zuoqiu, LI Xiaoguang, ZHANG Kaifeng, FU Wanzhang, TONG Xiaogen, MENG Gang. Long Term Leaching Behavior of Heavy Metals in Gold Tailings Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3736-3744. |
| [15] | SONG Zifeng, WANG Chen, ZHANG Yong. Research Progress on Glass-Based Neutron and Gamma-Ray Shielding Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3824-3833. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||