[1] CRAIG O E, SAUL H, LUCQUIN A, et al. Earliest evidence for the use of pottery[J]. Nature, 2013, 496(7445): 351-354. [2] WU X H, ZHANG C, GOLDBERG P, et al. Early pottery at 20 000 years ago in Xianrendong cave, China[J]. Science, 2012, 336(6089): 1696-1700. [3] AI Q, CHEN E Z, ZHU L Z. Zisha art combined with modern ceramic technology on alleviating anxiety among potters[J]. CNS Spectrums, 2023, 28(supplement 2): S57. [4] GAO X Y. Unravelling the complex meanings and origins of zisha teapots in the Ming and Qing dynasties[D]. Oxford: University of Oxford, 2023. [5] LI K, WANG D L, CHEN H, et al. Normalized evaluation of thermal shock resistance for ceramic materials[J]. Journal of Advanced Ceramics, 2014, 3(3): 250-258. [6] GAO X Y, HEIN A, QUINN P. Tea for two: the dual modes of contemporary Zisha teaware production and their implications for archaeological research[J]. Ethnoarchaeology, 2023, 15(2): 87-109. [7] YANG C R, KONG J Y, YANG J J, et al. The study of crystal-phase composition and pore structure for Dicaoqing-Zisha compared with porcelain and pottery[J]. Ceramics International, 2021, 47(8): 10650-10657. [8] NAGA S M, EL-MAGHRABY A A, HASSAN A M. Mullite/β-spodumene composites: preparation and characterization[J]. Ceramics International, 2016, 42(10): 12161-12166. [9] DONG X, LIU J C, DU H Y, et al. Microstructure characterization of in situ synthesized porous Si2N2O ceramics using spodumene additive[J]. Ceramics International, 2013, 39(4): 4657-4662. [10] HU C, WU J F, XU X H, et al. Investigating the effect of andalusite on mechanical strength and thermal shock resistance of cordierite-spodumene composite ceramics[J]. Ceramics International, 2018, 44(3): 3240-3247. [11] KUSCER D, BANTAN I, HROVAT M, et al. The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes[J]. Journal of the European Ceramic Society, 2017, 37(2): 739-746. [12] KIANI M, EBADZADEH T. Effect of mechanical activation and microwave sintering on crystallization and mechanical strength of cordierite nanograins[J]. Ceramics International, 2015, 41(2): 2342-2347. [13] ZHANG L F, OLHERO S, FERREIRA J M F. Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics[J]. Ceramics International, 2016, 42(15): 16897-16905. [14] MANDAL S, CHAKRABARTI S, DAS S K, et al. Synthesis of low expansion ceramics in lithia-alumina-silica system with zirconia additive using the powder precursor in the form of hydroxyhydrogel[J]. Ceramics International, 2007, 33(2): 123-132. [15] WU Y Q, TIAN Y M, WU Y Q, et al. Preparation study for the low thermal expansion spodumene/mullite composites[J]. International Journal of Applied Ceramic Technology, 2022, 19(3): 1702-1712. [16] 王 平, 王 俊, 简觉非, 等. 锂辉石质耐热紫砂陶研究[J]. 中国陶瓷, 2012, 48(11): 43-47. WANG P, WANG J, JIAN J F, et al. A study on heat-resistance zisha pottery[J]. China Ceramics, 2012, 48(11): 43-47 (in Chinese). [17] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite: a review[J]. Journal of the European Ceramic Society, 2008, 28(2): 329-344. [18] 王子健, 左桂鸿, 郑友进, 等. 堇青石合成与改性研究进展[J]. 中国陶瓷, 2023, 59(11): 11-19. WANG Z J, ZUO G H, ZHENG Y J, et al. Research on synthesis and modification of cordierite[J]. China Ceramics, 2023, 59(11): 11-19 (in Chinese). [19] 李天伶. β-锂辉石的晶体化学性质及其低热膨胀性的结构解释[J]. 硅酸盐通报, 1995, 14(2): 27-32+44. LI T L. The crystal chemistry of β-spodumene and the structure explanation to it's low thermal expansion[J]. Bulletin of the Chinese Ceramic Society, 1995, 14(2): 27-32+44 (in Chinese). [20] 吴智强, 顾幸勇, 罗 婷, 等. 紫砂泥对瓷质建筑陶瓷砖性能影响的初步研究[J]. 中国陶瓷工业, 2015, 22(4): 1-4. WU Z Q, GU X Y, LUO T, et al. Effects of purple clay on the properties of porcelain building tiles[J]. China Ceramic Industry, 2015, 22(4): 1-4 (in Chinese). [21] MANDAL S, CHAKRABARTI S, GHATAK S. Preparation and characterization of a powder precursor, consisting of oxides of Li—Al—Si in the form of hydroxyhydrogel for synthesis of β-spodumene ceramics[J]. Ceramics International, 2004, 30(3): 357-367. [22] WU J F, HU C, XU X H, et al. Preparation and thermal shock resistance of cordierite-spodumene composite ceramics for solar heat transmission pipeline[J]. Ceramics International, 2016, 42(12): 13547-13554. [23] 史志铭, 梁开明, 顾守仁. 元素掺杂对堇青石晶体结构及热膨胀系数的作用[J]. 现代技术陶瓷, 2000, 21(2): 18-23. SHI Z M, LIANG K M, GU S R. Effects of elements-doping on the crystal structure and thermal expansion coefficient of cordierite[J]. Advanced Ceramics, 2000, 21(2): 18-23 (in Chinese). [24] CHOTARD T, SORO J, LEMERCIER H, et al. High temperature characterisation of cordierite-mullite refractory by ultrasonic means[J]. Journal of the European Ceramic Society, 2008, 28(11): 2129-2135. [25] 骞少阳. 高吸收低反射太阳能陶瓷材料的研究[D]. 武汉: 武汉理工大学, 2011. JIAN S Y. Study on high absorption and low reflection solar ceramic materials[D]. Wuhan: Wuhan University of Technology, 2011(in Chinese). [26] 杨镓境, 陈海燕, 蒋美平, 等. 清水泥紫砂矿料工艺矿物学研究及其烧成品微观结构研究[J]. 矿产保护与利用, 2022, 42(4): 128-134. YANG J J, CHEN H Y, JIANG M P, et al. The study of minerology of Qingshui zisha clay mineral and the microstructure of sintering products[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 128-134 (in Chinese). [27] 李 智, 田玉明, 孔祥辰, 等. 孔隙结构对紫砂砂器显微组织和性能的影响[J]. 非金属矿, 2025, 48(1): 10-13. LI Z, TIAN Y M, KONG X C, et al. Effect of pore structure on the microstructure and properties of purple clay sand vessels[J]. Non-Metallic Mines, 2025, 48(1): 10-13 (in Chinese). |