[1] 韦奕麒, 韩 芳, 汤仲虬, 等. 铜及其合金研究进展[J]. 铜业工程, 2024(5): 40-62. WEI Y Q, HAN F, TANG Z Q, et al. Research progress on copper and its alloys[J]. Copper Engineering, 2024(5): 40-62 (in Chinese). [2] 郭思宇, 马晓光, 赵敬伟. T2紫铜复杂异形零件渐进微冲裁工艺研究[J]. 塑性工程学报, 2024, 31(9): 54-59. GUO S Y, MA X G, ZHAO J W. Study on progressive micropunching process of T2 copper complex shaped parts[J]. Journal of Plasticity Engineering, 2024, 31(9): 54-59 (in Chinese). [3] 石 梅. 紫铜止水片在水工建筑物中的应用研究[J]. 工程技术研究, 2024, 9(9): 117-119. SHI M. Research on the application of purple copper water-stop sheet in hydraulic structure[J]. Engineering and Technological Research, 2024, 9(9): 117-119 (in Chinese). [4] 孙雄飞, 王丽丽, 严 静. 稀土在紫铜中应用的研究进展[J]. 铜业工程, 2018(4): 47-51. SUN X F, WANG L L, YAN J. Research progress on the application of rare earth in red copper[J]. Copper Engineering, 2018(4): 47-51 (in Chinese). [5] 李 宁. 紫铜与不锈钢搭接搅拌摩擦焊工艺研究及应用[D]. 长沙: 中南大学, 2014. LI N. Research and application of lap friction stir welding technology between copper and stainless steel[D]. Changsha: Central South University, 2014 (in Chinese). [6] 林 龙, 梅丽芳, 严东兵, 等. T2紫铜光纤激光焊接工艺与性能研究[J]. 应用激光, 2023, 43(12): 89-97. LIN L, MEI L F, YAN D B, et al. Study on technology and properties of fiber laser welding T2 red copper[J]. Applied Laser, 2023, 43(12): 89-97 (in Chinese). [7] 张 欣, 黄 晨, 唐安山. 化学组成对耐火材料抗钠冰晶石侵蚀影响研究[J]. 硅酸盐通报, 2020, 39(7): 2302-2307. ZHANG X, HUANG C, TANG A S. Effect of chemical composition on corrosion resistance to cryolite of refractory[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2302-2307 (in Chinese). [8] 黄 晨. 铝硅质耐火材料抗冰晶石侵蚀研究[D]. 湘潭: 湖南科技大学, 2021. HUANG C. Study on cryolite corrosion resistance of alumina-silica refractories[D]. Xiangtan: Hunan University of Science and Technology, 2021 (in Chinese). [9] 尹玉成, 梁永和, 吴芸芸, 等. TiO2在Al2O3-SiO2系耐火材料中的作用[J]. 耐火材料, 2006, 40(2): 139-142. YIN Y C, LIANG Y H, WU Y Y, et al. Effect of TiO2 on Al2O3-SiO2 system refractories[J]. Refractories, 2006, 40(2): 139-142 (in Chinese). [10] 党吉喆. 中频感应熔炼炉炉衬热应力分析与结构优化[D]. 石家庄: 河北科技大学, 2023. DANG J Z. Thermal stress analysis and structural optimization of lining of medium frequency induction melting furnace[D]. Shijiazhuang: Hebei University of Science and Technology, 2023 (in Chinese). [11] WANG Y F, ZHANG J L, WANG C, et al. The corrosion behavior of Al2O3-SiO2 refractory in reducing atmosphere[J]. Ceramics International, 2024, 50(23): 51550-51559. [12] 郑新兵, 何宇蓉. 硫磺回收反应炉衬里失效原因及防范措施[J]. 耐火材料, 2011, 45(3): 218-220. ZHENG X B, HE Y R. Causes and preventive measures of lining failure in sulfur recovery reaction furnace[J]. Refractories, 2011, 45(3): 218-220 (in Chinese). [13] 魏 瀚, 毛利民, 王俊涛, 等. 熔铸锆铬刚玉耐火材料抗硼硅酸盐熔体的侵蚀行为[J]. 硅酸盐学报, 2023, 51(12): 3196-3203. WEI H, MAO L M, WANG J T, et al. Corrosion resistance of fused-cast AZCS refractory by borosilicate melt[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3196-3203 (in Chinese). [14] LIU W, WANG L, MA B Z, et al. Reactions between magnesia-chrome refractories and copper converter slags: corrosion behavior and prevention by Fe-rich layer formation[J]. Ceramics International, 2022, 48(10): 14813-14824. [15] 陈玉娥, 任鑫英, 左小坦, 等. 炼铜用耐火材料研究进展[J]. 铜业工程, 2024(3): 97-109. CHEN Y E, REN X Y, ZUO X T, et al. Research progress of refractory materials used in copper smelting[J]. Copper Engineering, 2024(3): 97-109 (in Chinese). [16] MAHAPATRA M K. Review of corrosion of refractory in gaseous environment[J]. International Journal of Applied Ceramic Technology, 2020, 17(2): 606-615. [17] 宋聪聪, 李富朝, 叶方保, 等. 铝合金熔炼炉用铝硅质浇注料的侵蚀行为研究[J]. 铸造, 2017, 66(4): 393-397. SONG C C, LI F C, YE F B, et al. Corrosion behavior of the Al2O3-SiO2 castables for furnace of melting aluminum alloy[J]. Foundry, 2017, 66(4): 393-397 (in Chinese). [18] WANG H, CUI K K, ZHANG Y Y, et al. Mechanical properties and microstructure of Cr2O3 reinforced 3Al2O3·2SiO2 composite refractories[J]. Journal of Materials Research and Technology, 2023, 24: 8473-8486. [19] VILLALBA WEINBERG A, VARONA C, CHAUCHERIE X, et al. Corrosion of Al2O3-SiO2 refractories by sodium and sulfur vapors: a case study on hazardous waste incinerators[J]. Ceramics International, 2017, 43(7): 5743-5750. [20] 张三华, 王战民, 胡书禾, 等. Al2O3含量及热处理温度对Al2O3-SiO2系浇注料抗铝液侵蚀性的影响[J]. 耐火材料, 2010, 44(1): 1-6. ZHANG S H, WANG Z M, HU S H, et al. Influence of Al2O3 content and heat treatment temperature on corrosion resistance of Al2O3-SiO2 castables to molten aluminum[J]. Refractories, 2010, 44(1): 1-6 (in Chinese). [21] 曹 楗, 王 翠, 张建良, 等. 高炉炉缸用Al2O3-SiO2-SiC浇注料抗渣铁侵蚀机制研究[J]. 钢铁研究学报, 2024, 36(4): 424-434. CAO J, WANG C, ZHANG J L, et al. Study on slag-iron corrosion resistance mechanism of Al2O3-SiO2-SiC castables for blast furnace hearth[J]. Journal of Iron and Steel Research, 2024, 36(4): 424-434 (in Chinese). [22] 李人骏, 张 玲, 郑培毓. 电熔MgAl2O4对Al2O3-MgAl2O4复合耐火材料高温蠕变性能的影响[J]. 复合材料学报, 2022, 39(1): 285-291. LI R J, ZHANG L, ZHENG P Y. Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 285-291 (in Chinese). [23] ZHANG P X, CHEN A B, DING D F, et al. Trace nanoscale Al2O3 in Al2O3-MgAl2O4 castable for improved thermal shock performance[J]. Ceramics International, 2019, 45(17): 23029-23036. [24] 李之凡, 黄建国. Al2O3-MgAl2O4复合多孔陶瓷支撑体的制备及性能[J]. 硅酸盐学报, 2018, 46(9): 1250-1256. LI Z F, HUANG J G. Preparation and characterization of composite porous ceramic supports from alumina and magnesium aluminate spinel[J]. Journal of the Chinese Ceramic Society, 2018, 46(9): 1250-1256 (in Chinese). [25] CHEN Z, YAN W, SCHAFFÖNER S, et al. Vacuum impregnation treatment of microporous Al2O3-MgAl2O4 refractory raw materials with submicron pores and high strength[J]. Journal of the European Ceramic Society, 2022, 42(12): 5145-5152. [26] 国家市场监督管理总局, 国家标准化管理委员会. 耐火材料 X射线荧光光谱化学分析 熔铸玻璃片法: GB/T 21114—2019[S]. 北京: 中国标准出版社, 2020. State Administration for Market Supervision and Administration, National Standardization Administration. X-ray fluorescence spectrometry for refractory chemical analysis melt-cast glass slice method: GB/T 21114—2019[S]. Beijing: China Standards Publishing House, 2020 (in Chinese). [27] 国家质量监督检验检疫总局, 国家标准化管理委员会. 钢铁及合金 碳含量的测定 管式炉内燃烧后气体容量法: GB/T 223.69—2008[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Determination of carbon content in steel and alloys-gas volume method after combustion in tube furnace: GB/T 223.69—2008[S]. Beijing: China Standards Publishing House, 2008 (in Chinese). [28] 国家质量监督检验检疫总局, 国家标准化管理委员会. 无机化工产品 晶型结构分析 X射线衍射法: GB/T 30904—2014[S]. 北京: 中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Analysis of crystal structure of inorganic chemical products X-ray diffraction method: GB/T 30904—2014[S]. Beijing: China Standards Publishing House, 2014 (in Chinese). [29] 张健宇, 杨佳仪, 吴 婷, 等. 木炭在无氧铜熔铸中的行为机理[J]. 中国冶金, 2024, 34(11): 124-135. ZHANG J Y, YANG J Y, WU T, et al. Behavioral mechanisms of charcoal in oxygen-free copper melting and casting[J]. China Metallurgy, 2024, 34(11): 124-135 (in Chinese). [30] JACOB K T, ALCOCK C B. Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3[J]. Journal of the American Ceramic Society, 1975, 5(58): 192-195. [31] LIU W, MA B Z, WANG L, et al. Corrosion behavior of silica-alumina refractories for scrap brass smelter linings[J]. Journal of Cleaner Production, 2022, 370: 133600. [32] WANG X, LIU W, WU T, et al. Corrosion mechanism of MgO-Cr2O3 bricks for scrap brass smelting[J]. Ceramics International, 2025, 51(3): 3442-3452. |