[1] 王天亮, 王 林, 刘松松, 等. 黄原胶和瓜尔胶改良膨胀土力学特性试验研究[J]. 中国铁道科学, 2023, 44(2): 1-10. WANG T L, WANG L, LIU S S, et al. Experimental study on mechanical properties of expansive soil improved by xanthan gum and guar gum[J]. China Railway Science, 2023, 44(2): 1-10 (in Chinese). [2] 黄春丽, 阮永芬, 李志伟, 等. 改性膨胀土的膨胀率研究[J]. 硅酸盐通报, 2019, 38(12): 3759-3766. HUANG C L, RUAN Y F, LI Z W, et al. Study on expansion rate of modified expansive soil[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3759-3766 (in Chinese). [3] 喻成成, 卢 正, 姚海林, 等. 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(增刊1): 157-163+172. YU C C, LU Z, YAO H L, et al. Experimental study of modifying expansive soils using microbial induced calcite precipitation[J]. Rock and Soil Mechanics, 2022, 43(supplement 1): 157-163+172 (in Chinese). [4] 汪丽娜, 孙 慧, 刘 军, 等. 引江济淮工程膨胀土渠坡失稳机理及加固效果分析[J]. 岩土工程学报, 2023, 45(增刊1): 136-139+175. WANG L N, SUN H, LIU J, et al. Instability mechanism and reinforcement effects of expansive soil channel slopes of Yangtze River to Huaihe River Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(supplement 1): 136-139+175 (in Chinese). [5] ALI AL-RAWAS A, HAGO A W, AL-SARMI H. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman[J]. Building and Environment, 2005, 40(5): 681-687. [6] JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294. [7] JULPHUNTHONG P, JOYKLAD P, MANPROM P, et al. Evaluation of calcium carbide residue and fly ash as sustainable binders for environmentally friendly loess soil stabilization[J]. Scientific Reports, 2024, 14(1): 671. [8] 孙树林, 郑青海, 唐 俊, 等. 碱渣改良膨胀土室内试验研究[J]. 岩土力学, 2012, 33(6): 1608-1612. SUN S L, ZHENG Q H, TANG J, et al. Experimental research on expansive soil improved by soda residue[J]. Rock and Soil Mechanics, 2012, 33(6): 1608-1612 (in Chinese). [9] ALISHA S S, DUMPA V, SREENIVASULU V, et al. Red mud nano-fines potential for improving the geotechnical properties of ameliorated reconstituted black cotton soil[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2022, 5(4): 427-445. [10] 郭坤龙, 储诚富, 叶 浩, 等. 铁尾矿砂-电石渣复合改良膨胀土的直剪试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1263-1268. GUO K L, CHU C F, YE H, et al. Study on direct shear strength of expansive soils improved by iron tailing sands and calcium carbide slag[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(9): 1263-1268 (in Chinese). [11] 吴燕开, 乔晓龙, 李丹丹, 等. 干湿循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 319-329. WU Y K, QIAO X L, LI D D, et al. Experimental study on expansive soil improved by steel slag powder-cement under dry-wet cycles[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2021, 53(3): 319-329 (in Chinese). [12] 乔京生, 王旭影, 王冠泓, 等. 粒化高炉矿渣微粉固化淤泥质土的动力特性及微观机理[J]. 硅酸盐通报, 2021, 40(7): 2306-2312. QIAO J S, WANG X Y, WANG G H, et al. Dynamic characteristics and microscopic mechanism of muddy clay solidified by ground granulated blast-furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2306-2312 (in Chinese). [13] 厉帅康, 俞 峰, 陈 鑫, 等. 水泥-矿渣基早强固化剂制备及固化土宏微观性能研究[J]. 硅酸盐通报, 2023, 42(11): 3964-3977+4005. LI S K, YU F, CHEN X, et al. Preparation of cement-slag based early strength curing agent and macro and micro properties of solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3964-3977+4005 (in Chinese). [14] 罗晓洪, 张世俊, 郭荣鑫, 等. 电石渣替代水泥作碱激发剂对过硫磷石膏胶凝材料性能和微观结构的影响[J]. 材料导报, 2023, 37(增刊2): 298-304. LUO X H, ZHANG S J, GUO R X, et al. Effect of carbide slag instead of cement as alkali activator on properties and microstructure of excess-sulphate phosphogypsum cementitious material[J]. Materials Reports, 2023, 37(supplement 2): 298-304 (in Chinese). [15] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [16] 李 威, 王协群, 申雅卓, 等. 固化剂在膨胀土改良中的应用[J]. 中国农村水利水电, 2018(8): 141-144. LI W, WANG X Q, SHEN Y Z, et al. The applications of curing agents in the improvement of expansive soil[J]. China Rural Water and Hydropower, 2018(8): 141-144 (in Chinese). [17] 张军辉, 陈莎莎, 顾 凡, 等. 工业废弃料在路基改良中的应用综述[J]. 中国公路学报, 2023, 36(10): 1-16. ZHANG J H, CHEN S S, GU F, et al. Industrial waste materials utilized in subgrade modification: a review[J]. China Journal of Highway and Transport, 2023, 36(10): 1-16 (in Chinese). [18] 周纯秀, 崔洪海, 张中丽, 等. 改良碳酸盐渍土路基填料的力学性质[J]. 哈尔滨工业大学学报, 2022, 54(9): 93-100. ZHOU C X, CUI H H, ZHANG Z L, et al. Mechanical properties of improved carbonate soil roadbed filler[J]. Journal of Harbin Institute of Technology, 2022, 54(9): 93-100 (in Chinese). [19] 刘宇翼. 电石渣-稻壳灰基胶凝材料固化膨胀土机理及其物理力学特性研究[D]. 徐州: 中国矿业大学, 2019. LIU Y Y. Study on mechanism and physical-mechanical properties of stabilized expansive soil by cementitious material from calcium carbide residue and rice husk ash[D]. Xuzhou: China University of Mining and Technology, 2019 (in Chinese). [20] 李丽华, 李孜健, 肖衡林, 等. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745. LI L H, LI Z J, XIAO H L, et al. Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(9): 1736-1745 (in Chinese). [21] 何 俊, 王小琦, 石小康, 等. 碱渣-矿渣固化淤泥的无侧限抗压强度与微观特征[J]. 应用基础与工程科学学报, 2021, 29(2): 376-386. HE J, WANG X Q, SHI X K, et al. Unconfined compressive strength and microscopic characteristics of soft soil solidified with soda residue and ground granulated blast furnace slag[J]. Journal of Basic Science and Engineering, 2021, 29(2): 376-386 (in Chinese). [22] 王旭影, 乔京生, 赵建业, 等. 电石渣激发钢渣-矿渣固化淤泥质土的试验研究[J]. 硅酸盐通报, 2022, 41(2): 733-739. WANG X Y, QIAO J S, ZHAO J Y, et al. Solidification of muddy soil with steel slag and ground granulated blast-furnace slag activated by calcium carbide slag[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 733-739 (in Chinese). [23] 周恒宇, 王修山, 胡星星, 等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098. ZHOU H Y, WANG X S, HU X X, et al. Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge[J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098 (in Chinese). [24] LIU Y Y, CHANG C W, NAMDAR A, et al. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue[J]. Construction and Building Materials, 2019, 221: 1-11. [25] 钟煜清, 蔡光华, 刘松玉, 等. 石灰激发粒化高炉矿渣改良富有机质土试验[J]. 林业工程学报, 2022, 7(4): 151-157. ZHONG Y Q, CAI G H, LIU S Y, et al. Experimental research of organic-rich soil improved by lime-activated granulated blast furnace slag[J]. Journal of Forestry Engineering, 2022, 7(4): 151-157 (in Chinese). [26] 魏明俐, 杜延军, 张 帆. 水泥固化/稳定锌污染土的强度和变形特性试验研究[J]. 岩土力学, 2011, 32(增刊2): 306-312. WEI M L, DU Y J, ZHANG F. Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soil[J]. Rock and Soil Mechanics, 2011, 32(supplement 2): 306-312 (in Chinese). [27] 朱坤垅. 淤泥质土固化及路用性能试验研究[D]. 杭州: 浙江大学, 2021. ZHU K L. Study on solidification of mucky soil and road performance[D]. Hangzhou: Zhejiang University, 2021 (in Chinese). [28] 柴石玉, 张凌凯. 碱激发粉煤灰-钢渣粉协同固化膨胀土力学特性与微观机理研究[J]. 材料导报, 2023, 37(增刊1): 269-276. CHAI S Y, ZHANG L K. Mechanical properties and mechanism analysis of expansive soil solidified by alkali-activated fly ash and steel slag powder[J]. Materials Reports, 2023, 37(supplement 1): 269-276 (in Chinese). [29] 金胜赫, 王修山, 吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究[J]. 工程地质学报, 2023, 31(2): 397-408. KIM S, WANG X S, WU Y P. Study on modification of marine clay treated with new gdc soil stabilizer[J]. Journal of Engineering Geology, 2023, 31(2): 397-408 (in Chinese). [30] 安 赛, 王宝民, 陈文秀, 等. 矿渣-电石渣基地质聚合物的性能及作用机制[J]. 硅酸盐通报, 2023, 42(11): 3996-4005. AN S, WANG B M, CHEN W X, et al. Performance and action mechanism of slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3996-4005 (in Chinese). |