[1] YANG M, QIAN J S, PANG Y. Activation of fly ash-lime systems using calcined phosphogypsum[J]. Construction and Building Materials, 2008, 22(5): 1004-1008. [2] RASHAD A M. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles[J]. Journal of Cleaner Production, 2015, 87: 717-725. [3] 周 武, 李 杨, 冯伟光, 等. 磷石膏的综合利用及其在建筑材料领域的应用研究进展[J]. 硅酸盐通报, 2024, 43(2): 534-542. ZHOU W, LI Y, FENG W G, et al. Research progress on comprehensive utilization of phosphogypsum and its application in the field of building materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 534-542 (in Chinese). [4] 马丽萍. 磷石膏资源化综合利用现状及思考[J]. 磷肥与复肥, 2019, 34(7): 5-9. MA L P. Current situation and consideration of comprehensive utilization of phosphogypsum resources[J]. Phosphate & Compound Fertilizer, 2019, 34(7): 5-9 (in Chinese). [5] 俞 坚, 郭程铭, 毛裕均. 改性磷石膏用作水泥缓凝剂的试验研究[J]. 新型建筑材料, 2015, 42(9): 31-33. YU J, GUO C M, MAO Y J. Experimental study on the using of modified phosphogypsum as cement retarder[J]. New Building Materials, 2015, 42(9): 31-33 (in Chinese). [6] 水中和, 吴赤球, 孙 涛, 等. 过硫磷石膏矿渣水泥混凝土的研究与应用进展[J]. 混凝土与水泥制品, 2021(2): 97-100. SHUI Z H, WU C Q, SUN T, et al. Research and application progress of excess-sulfate phosphogypsum slag cement concrete[J]. China Concrete and Cement Products, 2021(2): 97-100 (in Chinese). [7] 刘 超, 赵德强, 马 倩, 等. 水泥-磷石膏稳定碎石路面基层材料的研究与应用[J]. 硅酸盐通报, 2023, 42(6): 2121-2130. LIU C, ZHAO D Q, MA Q, et al. Research and application of cement-phosphogypsum stabilized crushed stone pavement base material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2121-2130 (in Chinese). [8] 宗 炜, 王远辉, 许 亮, 等. 工业固废磷石膏路面基层材料路用性能研究[J]. 硅酸盐通报, 2024, 43(2): 766-773. ZONG W, WANG Y H, XU L, et al. Pavement performance of industrial solid waste phosphogypsum pavement base material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 766-773 (in Chinese). [9] SENGUPTA I, DHAL P K. Impact of elevated phosphogypsum on soil fertility and its aerobic biotransformation through indigenous microorganisms (IMO’s) based technology[J]. Journal of Environmental Management, 2021, 297: 113195. [10] 吴赤球, 水中和, 吕 伟, 等. 超高掺量磷石膏水硬性胶凝材料及其应用[M]. 武汉: 武汉理工大学出版社, 2023. WU C Q, SHUI Z H, LYU W, et al. High dosage phosphogypsum hydraulic cementing material and its application[M]. Wuhan: Wuhan University of Technology Press, 2023 (in Chinese). [11] OUYANG G S, SUN T, YU Z C, et al. Investigation on macroscopic properties, leachability and microstructures of surface reinforced phosphogypsum-based cold-bonded aggregates[J]. Journal of Building Engineering, 2023, 69: 106305. [12] SUN T, LI W M, XU F, et al. A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: mechanical properties and environmental benefits[J]. Journal of Cleaner Production, 2023, 400: 136555. [13] LIU X, WU C Q, LV W, et al. Regulating sulfur migration and transformation in low water-binder ratio cementitious system incorporating phosphogypsum aggregate: environmentally friendly clean materials[J]. Journal of Building Engineering, 2024, 91: 109586. [14] DONG E L, FU S Y, WU C Q, et al. Value-added utilization of phosphogypsum industrial by-products in producing green ultra-high performance concrete: detailed reaction kinetics and microstructure evolution mechanism[J]. Construction and Building Materials, 2023, 389: 131726. [15] 马昆林, 刘 建, 申景涛, 等. 骨料强化方法对再生混凝土多界面过渡区微观结构的影响[J]. 铁道科学与工程学报, 2023, 20(10): 3809-3819. MA K L, LIU J, SHEN J T, et al. Influence of aggregate enhancement methods on the microstructure of multiple ITZs in recycled concrete[J]. Journal of Railway Science and Engineering, 2023, 20(10): 3809-3819 (in Chinese). [16] 高 嵩, 班顺莉, 郭 嘉, 等. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 97-103. GAO S, BAN S L, GUO J, et al. Effect of silica fume on interfacial transition zone of recycled concrete[J]. Materials Reports, 2023, 37(11): 97-103 (in Chinese). [17] SUN D D, SHI H S, WU K, et al. Influence of aggregate surface treatment on corrosion resistance of cement composite under chloride attack[J]. Construction and Building Materials, 2020, 248: 118636. [18] 肖智慧, 李中军, 吕 伟, 等. 磷石膏路基稳定材料的节能减排效益分析[J]. 混凝土与水泥制品, 2023(7): 99-102. XIAO Z H, LI Z J, LYU W, et al. Benefits analysis of energy saving and emission reduction of phosphogypsum roadbed stabilizing material[J]. China Concrete and Cement Products, 2023(7): 99-102 (in Chinese). [19] 杨秀丽, 崔 崇, 崔晓昱, 等. 壳层增强人造硅酸盐骨料性能[J]. 科技导报, 2014, 32(25): 26-31. YANG X L, CUI C, CUI X Y, et al. Properties of shell reinforced artificial silicate aggregate[J]. Science & Technology Review, 2014, 32(25): 26-31 (in Chinese). [20] 丁 超. 磷石膏基冷粘结集料的制备及性能优化研究[D]. 武汉: 武汉理工大学, 2022. DING C. Study on preparation and performance optimization of phosphogypsum-based cold bonded aggregate[D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [21] 黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008, 36(3): 405-410. LI L Y, SHI Z L, AI Y P. Alkaline activation of gypsum-granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society, 2008, 36(3): 405-410 (in Chinese). [22] LIU H, SUN Z P, YANG J B, et al. A novel method for semi-quantitative analysis of hydration degree of cement by 1H low-field NMR[J]. Cement and Concrete Research, 2021, 141: 106329. [23] TIAN Y, TIAN Z S, JIN N G, et al. A multiphase numerical simulation of chloride ions diffusion in concrete using electron microprobe analysis for characterizing properties of ITZ[J]. Construction and Building Materials, 2018, 178: 432-444. [24] 黄 赟. 磷石膏基水泥的开发研究[D]. 武汉: 武汉理工大学, 2010. HUANG Y. Development and research of phosphogypsum-based cement[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [25] DIAMOND S. Considerations in image analysis as applied to investigations of the ITZ in concrete[J]. Cement and Concrete Composites, 2001, 23(2/3): 171-178. [26] FANG G H, ZHANG M Z. The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete[J]. Cement and Concrete Research, 2020, 129: 105963. [27] WONG H S, HEAD M K, BUENFELD N R. Pore segmentation of cement-based materials from backscattered electron images[J]. Cement and Concrete Research, 2006, 36(6): 1083-1090. [28] 黄 燕, 胡 翔, 史才军, 等. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 106-117. HUANG Y, HU X, SHI C J, et al. Review on the formation and improvement of interfacial transition zone between cement paste and aggregate in concrete[J]. Materials Reports, 2023, 37(1): 106-117 (in Chinese). [29] 陈培鑫. BEI-GSR分析技术在复合水泥浆体结构中的应用研究[D]. 广州: 华南理工大学, 2013. CHEN P X. Study on application of BEI-GSR analysis technology in composite cement paste structure[D]. Guangzhou: South China University of Technology, 2013 (in Chinese). [30] 王培铭, 丰曙霞, 刘贤萍. 背散射电子图像分析在水泥基材料微观结构研究中的应用[J]. 硅酸盐学报, 2011, 39(10): 1659-1665. WANG P M, FENG S X, LIU X P. Application of backscattered electron imaging and image analysis in microstructure research on cement-based materials[J]. Journal of the Chinese Ceramic Society, 2011, 39(10): 1659-1665 (in Chinese). [31] MA Z M, YAO P P, YANG D Y, et al. Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete[J]. Journal of Materials Research and Technology, 2021, 15: 1030-1045. [32] 丁 沙. 过硫磷石膏矿渣水泥混凝土抗海盐侵蚀性能与机理研究[D]. 武汉: 武汉理工大学, 2014. DING S. Study on the anti-sea salt corrosion performance and mechanism of supersulphated cement concrete with parathion[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). |