[1] PASCO H, NAIDU S, LOTHENBACH B, et al. Enhancement of surface properties of cementitious materials by phosphate treatments[J]. Cement and Concrete Composites, 2023, 141: 105124. [2] CHEN M Z, YUAN H H, QIN X, et al. Improve corrosion resistance of steel bars in simulated concrete pore solution by the addition of EDTA intercalated CaAl-LDH[J]. Corrosion Science, 2024, 226: 111636. [3] 赖创林, 刘乐平, 刘剑辉, 等. 碳化养护水泥基材料的抗碳酸水溶液腐蚀性能[J]. 硅酸盐学报, 2023, 51(11): 2890-2904. LAI C L, LIU L P, LIU J H, et al. Corrosion resistance of cement-based materials by carbonation curing to carbonic acid solution[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2890-2904 (in Chinese). [4] 汪 洋, 李 华, 王育江, 等. 不同养护条件对混凝土长期收缩变形性能的影响[J]. 混凝土, 2023(10): 21-24+31. WANG Y, LI H, WANG Y J, et al. Effect of different curing conditions on long-term shrinkage deformation of concrete[J]. Concrete, 2023(10): 21-24+31 (in Chinese). [5] 黄大建, 王治武, 唐文捷, 等. 养护环境对偏高岭土基地聚物性能及微观结构的影响[J]. 硅酸盐通报, 2024, 43(4): 1463-1471. HUANG D J, WANG Z W, TANG W J, et al. Effect of curing environment on properties and microstructure of metakaolin based geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(4): 1463-1471 (in Chinese). [6] YANG Z H, XIE Y J, HE J H, et al. A comparative study on the mechanical properties and microstructure of cement-based materials by direct electric curing and steam curing[J]. Materials, 2021, 14(23): 7407. [7] 程 津, 谭 彬, 虞秀勇, 等. 低温条件下硫铝酸盐水泥砂浆的电养护[J]. 硅酸盐通报, 2020, 39(2): 447-452. CHENG J, TAN B, YU X Y, et al. Electric curing of sulphoaluminate cement mortar in low temperature environment[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 447-452 (in Chinese). [8] 林忠财, 朱芳萍, 王 敏. 高温碳化养护对干硬性水泥净浆强度及微观性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3337-3344. Lin Z C, ZHU F P, WANG M. Effect of high temperature carbonation curing on strength and microstructure of dry-mixed cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3337-3344 (in Chinese). [9] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276. GAO X J, LI S X. Effects of microwave curing on the mechanical properties of ultra-high performance concrete and affecting mechanism[J]. Materials Reports, 2019, 33(2): 271-276 (in Chinese). [10] 徐水太, 智海军. 正硅酸乙酯对水泥基材料性能的影响[J]. 新型建筑材料, 2020, 47(3): 53-55+74. XU S T, ZHI H J. Effects of tetraethyl orthosilicate(TEOS) treatment on properties of cement-based materials[J]. New Building Materials, 2020, 47(3): 53-55+74 (in Chinese). [11] PAN X Y, SHI Z G, SHI C J, et al. A review on concrete surface treatment part I: types and mechanisms[J]. Construction and Building Materials, 2017, 132: 578-590. [12] 余茂林, 邓安仲, 罗 盛, 等. 混凝土表面防护涂层材料的研究进展[J]. 混凝土与水泥制品, 2021(10): 29-34. YU M L, DENG A Z, LUO S, et al. Advances in surface protective coating of concrete[J]. China Concrete and Cement Products, 2021(10): 29-34 (in Chinese). [13] 吴永根, 吴豪祥, 李天伦, 等. 不同表面处理剂对道面混凝土性能的改善作用[J]. 材料科学与工程学报, 2022, 40(1): 154-159. WU Y G, WU H X, LI T L, et al. Improvement of different surface treatment agents on the performance of pavement concrete[J]. Journal of Materials Science and Engineering, 2022, 40(1): 154-159 (in Chinese). [14] WANG L, REN Z S, WANG H, et al. Microstructure-property relationships in cement mortar with surface treatment of microbial induced carbonate precipitation[J]. Composites Part B: Engineering, 2022, 239: 109986. [15] 孙健翔, 黎鹏平, 范志宏, 等. 含氟混凝土表面增强剂对混凝土的微观结构及力学性能的影响[J]. 建筑结构, 2022, 52(增刊1): 1562-1565. SUN J X, LI P P, FAN Z H, et al. Effects of fluorine-containing surface agent on hydration, microstructure and mechanical properties of concrete[J]. Building Structure, 2022, 52(supplement 1): 1562-1565 (in Chinese). [16] WANG Y, ZHANG W H, WU P P, et al. Study on preparation and strengthening mechanism of new surface treatment agent of concrete at multi-scale[J]. Construction and Building Materials, 2022, 346: 128404. [17] PIGINO B, LEEMANN A, FRANZONI E, et al. Ethyl silicate for surface treatment of concrete-part II: characteristics and performance[J]. Cement and Concrete Composites, 2012, 34(3): 313-321. [18] BALTAZAR L, SANTANA J, LOPES B, et al. Surface skin protection of concrete with silicate-based impregnations: influence of the substrate roughness and moisture[J]. Construction and Building Materials, 2014, 70: 191-200. [19] LI S Q, YANG J B, ZHANG P. Water-cement-density ratio law for the 28-day compressive strength prediction of cement-based materials[J]. Advances in Materials Science and Engineering, 2020, 2020(1): 7302173. [20] 杨进波, 冯竟竟, 韩 笑. 基于水胶密度比测定的新拌混凝土28 d抗压强度预测方法: CN110057716A[P]. 2019-07-26. YANG J B, FENG J J, HAN X. Prediction method of 28-day compressive strength offreshly mixed concrete based onwater-cement-density ratio: CN110057716A[P]. 2019-07-26 (in Chinese). [21] 马倩敏, 黄丽萍, 牛治亮, 等. 碱激发剂浓度及模数对碱矿渣胶凝材料抗压性能及水化产物的影响研究[J]. 硅酸盐通报, 2018, 37(6): 2002-2007. MA Q M, HUANG L P, NIU Z L, et al. Effect of alkali concentration and modulus of alkaline activator on the compressive properties and hydration products of alkali activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 2002-2007 (in Chinese). [22] HABIBNEJAD KORAYEM A, GHODDOUSI P, SHIRZADI JAVID A A, et al. Graphene oxide for surface treatment of concrete: a novel method to protect concrete[J]. Construction and Building Materials, 2020, 243: 118229. [23] FRANZONI E, VARUM H, NATALI M E, et al. Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods[J]. Cement and Concrete Composites, 2014, 49: 50-58. [24] 高 华, 赵国庆, 刘满金, 等. 基于含气量的泡沫混凝土配合比设计方法试验研究[J]. 混凝土, 2024(1): 144-147+164. GAO H, ZHAO G Q, LIU M J, et al. Experimental study on mix design method of foamed concrete based on air content[J]. Concrete, 2024(1): 144-147+164 (in Chinese). [25] PAN X Y, SHI Z G, SHI C J, et al. Interactions between inorganic surface treatment agents and matrix of Portland cement-based materials[J]. Construction and Building Materials, 2016, 113: 721-731. |