硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 30-39.DOI: 10.16552/j.cnki.issn1001-1625.2025.0619
杨兆宁1,2(
), 张端1,2, 孙博学1,2(
), 高峰1,2, 李小青1,2, 聂祚仁1,2, 崔素萍1,2
收稿日期:2025-06-24
修订日期:2025-07-14
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
孙博学,博士,副教授。E-mail:sunboxue@bjut.edu.cn
作者简介:杨兆宁(2001—),男,硕士研究生。主要从事材料生命周期工程的研究。E-mail:yangzhaoning0520@163.com
基金资助:
YANG Zhaoning1,2(
), ZHANG Duan1,2, SUN Boxue1,2(
), GAO Feng1,2, LI Xiaoqing1,2, NIE Zuoren1,2, CUI Suping1,2
Received:2025-06-24
Revised:2025-07-14
Published:2026-01-20
Online:2026-02-10
摘要:
水泥材料生命周期内具有显著的碳汇潜力,但目前仍缺乏具体的碳汇环境效益核算方法。本文构建了基于动态指标的路面水泥混凝土碳汇时滞分析模型,系统评估了路面水泥混凝土全生命周期内的碳汇时间分布及其环境效益,并提出了用于修正静态碳核算结果的时间因子α与减排偏移量β。结果表明,100年内水泥材料碳汇总量占水泥生产排放量的22.18%。相比动态方法,采用传统方法高估了53.8%的碳汇效益。此外,时滞分析得到,100年时限内α为0.65,β为38 614.79 kgCO2e,水泥碳汇的环境收益可通过α、β进行快速修正。研究结果可为水泥材料碳汇精准计量提供方法依据,对长寿命基础设施系统的碳管理策略制定具有重要意义。
中图分类号:
杨兆宁, 张端, 孙博学, 高峰, 李小青, 聂祚仁, 崔素萍. 路面水泥混凝土碳汇环境效益的时滞分析与动态核算[J]. 硅酸盐通报, 2026, 45(1): 30-39.
YANG Zhaoning, ZHANG Duan, SUN Boxue, GAO Feng, LI Xiaoqing, NIE Zuoren, CUI Suping. Time-Lag Analysis and Dynamic Accounting of Environmental Benefits of Pavement Cement Concrete Carbon Sequestration[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 30-39.
| Flow | Input or output/t | |
|---|---|---|
| Resourse | Limestone | 1.05 |
| Sandstone | 7.08×10-2 | |
| Iron powder | 1.95×10-2 | |
| Bauxite | 7.62×10-2 | |
| Gypsum | 3.92×10-2 | |
| Energy | Coal | 0.147 |
| Emission | CO2 | 0.703 |
表1 水泥生产生命周期清单
Table 1 Life cycle inventory for cement production
| Flow | Input or output/t | |
|---|---|---|
| Resourse | Limestone | 1.05 |
| Sandstone | 7.08×10-2 | |
| Iron powder | 1.95×10-2 | |
| Bauxite | 7.62×10-2 | |
| Gypsum | 3.92×10-2 | |
| Energy | Coal | 0.147 |
| Emission | CO2 | 0.703 |
| Parameter | Value | Data resource |
|---|---|---|
| 1.58 mm/a0.5 | [ | |
| 0.5 mm/a0.5 | [ | |
| Pavement width | 7.5 m | |
| 52% | [ | |
| 0.75 | [ | |
| 335 kg/m3 |
表2 路面水泥混凝土碳汇核算主要参数
Table 2 Main parameters for carbon sequestration accounting of pavement cement concrete
| Parameter | Value | Data resource |
|---|---|---|
| 1.58 mm/a0.5 | [ | |
| 0.5 mm/a0.5 | [ | |
| Pavement width | 7.5 m | |
| 52% | [ | |
| 0.75 | [ | |
| 335 kg/m3 |
| Particle size grading | Particle size distribution percentage/% |
|---|---|
| <10 mm | 17.8 |
| 10~<30 mm | 27.1 |
| 30~50 mm | 17.3 |
| >50 mm | 37.8 |
表3 废弃混凝土粒径分布
Table 3 Waste concrete particle size distribution
| Particle size grading | Particle size distribution percentage/% |
|---|---|
| <10 mm | 17.8 |
| 10~<30 mm | 27.1 |
| 30~50 mm | 17.3 |
| >50 mm | 37.8 |
| Scenario | Temporal distribution by life cycle phase/a | GWP/ kgCO2e | TAWP/ kgCO2e | α | β/kgCO2e | ||
|---|---|---|---|---|---|---|---|
| Service phase | Demolition phase | Secondary use phase(landfill) | |||||
| Baseline | 30 | 0.4 | 69.6 | 1.10×105 | 7.17×104 | 0.65 | 3.86×104 |
| Post-demolition stockpiling | 30 | 1.0 | 69.0 | 1.24×105 (+11.95%) | 8.29×104 (+15.60%) | 0.69 (+5.63%) | 3.49×104 (-9.67%) |
| Long-service-life pavement | 40 | 0.4 | 59.6 | 1.08×105 (-2.28%) | 6.34×104 (-11.70%) | 0.59 (-9.65%) | 4.45×104 (+15.24%) |
| Short-service-life pavement | 20 | 0.4 | 79.6 | 1.26×105 (+14.59%) | 8.83×104 (+23.01%) | 0.71 (+9.39%) | 3.26×104 (-15.62%) |
表4 不同情景的敏感性分析结果
Table 4 Sensitivity analysis results under different scenarios
| Scenario | Temporal distribution by life cycle phase/a | GWP/ kgCO2e | TAWP/ kgCO2e | α | β/kgCO2e | ||
|---|---|---|---|---|---|---|---|
| Service phase | Demolition phase | Secondary use phase(landfill) | |||||
| Baseline | 30 | 0.4 | 69.6 | 1.10×105 | 7.17×104 | 0.65 | 3.86×104 |
| Post-demolition stockpiling | 30 | 1.0 | 69.0 | 1.24×105 (+11.95%) | 8.29×104 (+15.60%) | 0.69 (+5.63%) | 3.49×104 (-9.67%) |
| Long-service-life pavement | 40 | 0.4 | 59.6 | 1.08×105 (-2.28%) | 6.34×104 (-11.70%) | 0.59 (-9.65%) | 4.45×104 (+15.24%) |
| Short-service-life pavement | 20 | 0.4 | 79.6 | 1.26×105 (+14.59%) | 8.83×104 (+23.01%) | 0.71 (+9.39%) | 3.26×104 (-15.62%) |
| [1] |
SHEN L, GAO T M, ZHAO J N, et al. Factory-level measurements on CO2 emission factors of cement production in China[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 337-349.
DOI URL |
| [2] | 国家统计局. 中国统计年鉴2023 [DB/OL]. ( 2023-09-15) [ 2025-06-10]. http://www.stats.gov.cn/sj/ndsj/2023/indexch.htm. |
| National Bureau of Statistics of China. China statistical yearbook—2023 [DB/OL]. ( 2023-09-15) [ 2025-06-10]. http://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (in Chinese). | |
| [3] | 张 宾, 林永权, 陶从喜. 水泥工业碳中和技术现状与趋势[J]. 中国水泥, 2022(10): 57-61. |
| ZHANG B, LIN Y Q, TAO C X. Present situation and trend of carbon neutralization technology in cement industry[J]. China Cement, 2022(10): 57-61 (in Chinese). | |
| [4] | 唐鋆磊, 颜 安, 张海龙, 等. 腐蚀防护对钢铁材料降低碳排放的重要影响: 以钢质管道全生命周期碳排放计量研究为例[J]. 中国科学: 技术科学, 2023, 53(1): 53-70. |
| TANG J L, YAN A, ZHANG H L, et al. Importance of corrosion protection on steel materials in reducing carbon emissions: carbon emission measurement throughout the life cycle of steel pipeline as an example[J]. Scientia Sinica (Technologica), 2023, 53(1): 53-70 (in Chinese). | |
| [5] | ISO. Environmental management—life cycle assessment—principles and framework: [S]. Geneva: ISO, 2006. |
| [6] | 刘罗茜, 雷涯邻, 支树洁, 等. 中国水泥行业点源层面CCUS技术减排潜力与优化部署[J]. 北京理工大学学报(社会科学版), 2024, 26(4): 56-67. |
| LIU L Q, LEI Y L, ZHI S J, et al. Potential and optimization deployment of CCUS technology emission reduction at point source level in China’s cement industry[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2024, 26(4): 56-67 (in Chinese). | |
| [7] | 罗 雷, 郭旸旸, 李寅明, 等. 碳中和下水泥行业低碳发展技术路径及预测研究[J]. 环境科学研究, 2022, 35(6): 1527-1537. |
| LUO L, GUO Y Y, LI Y M, et al. Research on low-carbon development technology path and forecast of cement industry under carbon neutral situation[J]. Research of Environmental Sciences, 2022, 35(6): 1527-1537 (in Chinese). | |
| [8] | LAGERBLAD B. Carbon dioxide uptake during concrete life cycle: state of the art[M]. Stockholm: Swedish Cement and Concrete Research Institute, 2005. |
| [9] |
PADE C, GUIMARAES M. The CO₂ uptake of concrete in a 100 year perspective[J]. Cement and Concrete Research, 2007, 37(9): 1348-1356.
DOI URL |
| [10] | 郗凤明, 石铁矛, 王娇月, 等. 水泥材料碳汇研究综述[J]. 气候变化研究进展, 2015, 11(4): 288-296. |
| XI F M, SHI T M, WANG J Y, et al. Review on carbon sink research of cement materials[J]. Climate Change Research, 2015, 11(4): 288-296 (in Chinese). | |
| [11] |
XI F M, DAVIS S J, CIAIS P, et al. Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9(12): 880-883.
DOI |
| [12] |
HUANG Z, WANG J Y, BING L F, et al. Global carbon uptake of cement carbonation accounts 1930—2021[J]. Earth System Science Data, 2023, 15(11): 4947-4958.
DOI URL |
| [13] |
VAN ROIJEN E, SETHARES K, KENDALL A, et al. The climate benefits from cement carbonation are being overestimated[J]. Nature Communications, 2024, 15(1): 4848.
DOI PMID |
| [14] | 马铭婧, 黄 子, 王娇月, 等. 水泥碳汇核算及其对中国碳中和的贡献[J]. 中国科学: 地球科学, 2024, 54(6): 2086-2097. |
| MA M J, HUANG Z, WANG J Y, et al. Accounting of cement carbon sink and its contribution to China’s carbon neutrality[J]. Scientia Sinica (Terrae), 2024, 54(6): 2086-2097 (in Chinese). | |
| [15] | JOOS F, ROTH R, FUGLESTVEDT J S, et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis[J]. Atmospheric Chemistry and Physics, 2013, 13(5): 2793-2825. |
| [16] |
SHINE K P, FUGLESTVEDT J S, HAILEMARIAM K, et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change, 2005, 68(3): 281-302.
DOI URL |
| [17] |
PETERS G P, AAMAAS B, LUND M T, et al. Alternative “global warming” metrics in life cycle assessment: a case study with existing transportation data[J]. Environmental science & technology, 2011, 45(20): 8633-8641.
DOI URL |
| [18] |
ALLEN M R, FUGLESTVEDT J S, SHINE K P, et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants[J]. Nature Climate Change, 2016, 6(8): 773-776.
DOI |
| [19] |
LEVASSEUR A, LESAGE P, MARGNI M, et al. Considering time in LCA: dynamic LCA and its application to global warming impact assessments[J]. Environmental Science & Technology, 2010, 44(8): 3169-3174.
DOI URL |
| [20] | BSI. PAS 2050:2011 specification for the assessment of the life cycle greenhouse gas emissions of goods and services[R]. London: British Standards Institution, 2011. |
| [21] |
KENDALL A. Time-adjusted global warming potentials for LCA and carbon footprints[J]. The International Journal of Life Cycle Assessment, 2012, 17(8): 1042-1049.
DOI URL |
| [22] | 中华人民共和国交通运输部. 中国交通运输年鉴(2023)[M]. 北京: 人民交通出版社, 2023. |
| Ministry of Transport of the People’s Republic of China. China transportation yearbook (2023)[M]. Beijing: China Communications Press, 2023 (in Chinese). | |
| [23] | SANTERO N J, HORVATH A. Global warming potential of pavements[J]. Environmental Research Letters, 2009, 4(3): 034011. |
| [24] | AZARIJAFARI H, GUO F D, GREGORY J, et al. Carbon uptake of concrete in the US pavement network[J]. Resources, Conservation and Recycling, 2021, 167: 105397. |
| [25] | LOIJOS A, SANTERO N, OCHSENDORF J. Life cycle climate impacts of the US concrete pavement network[J]. Resources, Conservation and Recycling, 2013, 72: 76-83. |
| [26] | IPCC. Climate change 2007: the physical science basis[R]. Geneva: IPCC, 2007. |
| [27] | DODOO A, GUSTAVSSON L, SATHRE R. Carbon implications of end-of-life management of building materials[J]. Resources, Conservation and Recycling, 2009, 53(5): 276-286. |
| [28] |
VAN ROIJEN E, MILLER S A, DAVIS S J. Building materials could store more than 16 billion tonnes of CO2 annually[J]. Science, 2025, 387(6730): 176-182.
DOI URL |
| [29] | 杨 明, 罗 晶, 张 冬, 等. 既有设施拆除固废再利用的碳减排效益评价[J]. 公路, 2024, 69(7): 285-291. |
| YANG M, LUO J, ZHANG D, et al. Carbon emission reduction evaluation for the reuse of demolition solid waste from existing infrastructure[J]. Highway, 2024, 69(7): 285-291 (in Chinese). | |
| [30] | 秦慧敏. 高速公路水泥混凝土路面“白改黑” 设计与应用[J]. 公路, 2024, 69(11): 76-81. |
| QIN H M. Design and application of “white to black” for cement concrete pavement of expressway[J]. Highway, 2024, 69(11): 76-81 (in Chinese). | |
| [31] | 丛卓红, 陈恒达, 郑南翔, 等. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116. |
| CONG Z H, CHEN H D, ZHENG N X, et al. Surface texture of cement concrete pavement: a review[J]. Materials Reports, 2020, 34(9): 9110-9116 (in Chinese). |
| [1] | 延永东, 王宗豪, 陆春华, 武珂珂, 江成. 盐雾环境下带接缝混凝土抗氯离子侵蚀性能研究[J]. 硅酸盐通报, 2026, 45(1): 58-68. |
| [2] | 雷进生, 谭嘉伟, 史晓宇, 雷俊杰, 刘金鑫. 含营养骨料生态混凝土的养分缓释性能试验研究[J]. 硅酸盐通报, 2026, 45(1): 133-144. |
| [3] | 李顺凯, 窦华康, 孙凤品, 陈荣辉, 李杰. 模板表面粗糙度对混凝土制品表观质量的影响[J]. 硅酸盐通报, 2026, 45(1): 123-132. |
| [4] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [5] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [6] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [7] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [8] | 李彤, 王庆贺, 张逸超. 冻融循环作用下相变混凝土温度响应及热力场调控机理研究[J]. 硅酸盐通报, 2026, 45(1): 69-80. |
| [9] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [10] | 王春龙, 穆锐, 刘宁波, 王正刚. 再生混凝土的制备与力学性能研究进展[J]. 硅酸盐通报, 2025, 44(12): 4283-4300. |
| [11] | 韩金, 孙江涛, 李志堂, 黄胜, 沈卫国, 赵青林. 正混凝土劈裂拉伸损伤过程的细观模拟研究[J]. 硅酸盐通报, 2025, 44(12): 4346-4358. |
| [12] | 曹芳, 李刚, 郭家舜, 胡超, 张飞龙, 严佳俐. 固废混凝土交通声屏障单元板设计方法研究[J]. 硅酸盐通报, 2025, 44(12): 4448-4457. |
| [13] | 朱加锋, 梁雪燕, 杨文旺. Na2SO4对瓦斯封孔复合水泥性能的影响[J]. 硅酸盐通报, 2025, 44(12): 4325-4331. |
| [14] | 李霄鹏, 曾凡超, 王琴, 王健, 徐可心, 郭志翔. 不同石膏种类对硅酸盐水泥与无碱液体速凝剂相容性的影响[J]. 硅酸盐通报, 2025, 44(12): 4314-4324. |
| [15] | 黄强, 张永成, 曹锋, 任慧朝. 基于响应面优化的PET纤维复合砂浆的力学性能研究[J]. 硅酸盐通报, 2025, 44(12): 4332-4345. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||