[1] 胡国忠, 李 康, 许家林, 等. 覆岩采动裂隙空间形态反演方法及在瓦斯抽采中的应用[J]. 煤炭学报, 2023, 48(2): 750-762. HU G Z, LI K, XU J L, et al. Spatial morphology inversion method of mining-induced fractures of overburden and its application in gas drainage[J]. Journal of China Coal Society, 2023, 48(2): 750-762 (in Chinese). [2] 倪冠华, 付正麟, 李 钊, 等. 玻璃微珠及硅烷偶联剂对水泥基钻孔密封材料力学性能的影响规律[J/OL]. 煤炭学报, 2025: 1-14 (2025-05-14) [2025-08-26]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20250511001&dbname=CJFD&dbcode=CJFQ. NI G H, FU Z L, LI Z, et al. Influence of glass beads and silane coupling agent on mechanical properties of cement-based drilling sealing materials[J/OL]. Journal of China Society, 2025: 1-14 (2025-05-14) [2025-08-26]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20250511001&dbname=CJFD&dbcode=CJFQ (in Chinese). [3] 李大芳, 郭 鑫, 鲁 义, 等. 煤层瓦斯抽采钻孔封孔材料研究进展与展望[J]. 安全, 2024, 45(5): 44-51. LI D F, GUO X, LU Y, et al. Research progress and expectation of sealing materials for coal seam gas extraction drilling[J]. Safety & Security, 2024, 45(5): 44-51 (in Chinese). [4] 王 辉, 王庆平, 闵凡飞, 等. 注浆封孔材料的研究进展[J]. 材料导报, 2013, 27(13): 103-106. WANG H, WANG Q P, MIN F F, et al. Research progress of grouting sealing materials[J]. Materials Review, 2013, 27(13): 103-106 (in Chinese). [5] 侯少波, 何 成. 强渗透超早强纳米改性瓦斯钻孔封孔材料性能研究[J]. 煤炭技术, 2025, 44(6): 182-186. HOU S B, HE C. Study on performance of highly permeable ultra early strong nano modified gas drilling sealing materials[J]. Coal Technology, 2025, 44(6): 182-186 (in Chinese). [6] 左楠楠, 赵 君, 史竹青, 等. 速凝低成本封孔材料的制备与性能研究[J]. 能源化工, 2022, 43(1): 19-23. ZUO N N, ZHAO J, SHI Z Q, et al. Study on preparation and properties of quick-setting low-cost sealing materials[J]. Energy Chemical Industry, 2022, 43(1): 19-23 (in Chinese). [7] 刘 健, 王春梅. 甘蔗渣灰复合早强剂对水泥基封孔材料性能影响[J]. 兰州工业学院学报, 2025, 32(1): 16-23. LIU J, WANG C M. Analysis on effect of bagasse ash composite early strength agent on the properties of cement-based sealing materials[J]. Journal of Lanzhou Institute of Technology, 2025, 32(1): 16-23 (in Chinese). [8] 张保勇, 于 跃, 吴 强, 等. 聚合物对水泥基封孔材料性能的影响[J]. 黑龙江科技大学学报, 2025, 35(1): 1-5. ZHANG B Y, YU Y, WU Q, et al. Effects of polymer on performance of cement-based materials for sealing pore[J]. Journal of Heilongjiang University of Science and Technology, 2025, 35(1): 1-5 (in Chinese). [9] ZHAO Q, DA Y Q, HE T S, et al. Effect of Na2SO4 and Na2CO3 on early performance of non-gypsum/low-gypsum cement: mechanism of synergistic activation with gypsum[J]. Construction and Building Materials, 2025, 470: 140554. [10] HOU P K, WANG X M, ZHOU X M, et al. Regulations on the hydration, morphology, and sulfate-attack resistivity of C3A with micro/nano-silica particles[J]. Construction and Building Materials, 2022, 324: 126388. [11] CHEN Y S, TANG P F, ZHONG C, et al. Konjac glucomannan induced retarding effects on the early hydration of cement[J]. Polymers, 2022, 14(5): 1064. [12] FU J Y, BLIGH M W, SHIKHOV I, et al. A microstructural investigation of a Na2SO4 activated cement-slag blend[J]. Cement and Concrete Research, 2021, 150: 106609. [13] LU L C, WANG S D, CHENG X. Effect of admixture on sulfate resistance of alite-barium calcium sulphoaluminate cement mortar[J]. Procedia Engineering, 2012, 27: 237-243. [14] WANG B, CHU W Q, HAO Y L, et al. Synthesis and alumina leaching mechanism of calcium sulphoaluminate[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9): 2090-2095. [15] JOSEPH S, SNELLINGS R, CIZER Ö. Activation of Portland cement blended with high volume of fly ash using Na2SO4[J]. Cement and Concrete Composites, 2019, 104: 103417. [16] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. [17] FANG Y, WANG J L, WANG L, et al. Densifying hydration products of alite by a bio-inspired admixture[J]. Materials & Design, 2023, 225: 111490. |