[1] XU D, LIU J L, DU H H, et al. Performance optimization and carbon reduction effect of solid waste-based cementitious materials from iron and steel metallurgical slags and ammonia-soda residue[J]. Chemical Engineering Journal Advances, 2024, 17: 100584. [2] 张玉燕, 冯相昭. “双碳” 背景下固废基胶凝材料推广应用研究[J]. 江西建材, 2024(增刊1): 23-24. ZHANG Y Y, FENG X Z. Study on popularization and application of solid waste-based cementitious materials under the background of double carbon[J]. Jiangxi Building Materials, 2024(supplement 1): 23-24 (in Chinese). [3] 中国工程建设标准化协会. 固废基胶凝材料: T/CECS 10400—2024[S]. 北京: 中国标准出版社, 2024. China Engineering Construction Standardization Association. Solid waste based cementitious materials: T/CECS 10400—2024[S]. Beijing: China Standards Publishing House, 2024 (in Chinese). [4] 赵礼兵, 许 博, 李国峰, 等. 碱渣综合利用发展现状[J]. 化工矿物与加工, 2017, 46(6): 73-76. ZHAO L B, XU B, LI G F, et al. Development status in comprehensive utilization of alkaline residues[J]. Industrial Minerals & Processing, 2017, 46(6): 73-76 (in Chinese). [5] WANG Z C, LIU S Y, DENG Y F, et al. Dissolution characteristics of chloride ion in alkali residue and its effect on the properties of light-weighted soil[J]. Construction and Building Materials, 2023, 379: 131309. [6] 尹科明, 石松林, 伍小明. 碱渣治理硫酸尾气制取硫代硫酸钠工艺研究[J]. 盐业与化工, 2013, 42(7): 18-20. YIN K M, SHI S L, WU X M. Technology research of sodium thiosulfate preparation in treatment of sulfuric tail gas with alkali waste[J]. Journal of Salt and Chemical Industry, 2013, 42(7): 18-20 (in Chinese). [7] 黄 庆, 张建文, 黄连喜, 等. 生物炭+碱渣钙镁肥对镉污染土壤、花生产量和品质的影响[J]. 广东农业科学, 2019, 46(10): 48-55. HUANG Q, ZHANG J W, HUANG L X, et al. Effects of biochar + calcium-magnesium fertilizer made of soda waste on Cd-polluted soil, yield and quality of peanut[J]. Guangdong Agricultural Sciences, 2019, 46(10): 48-55 (in Chinese). [8] 王元战, 孙春鹏, 王 轩, 等. 掺入粉煤灰软黏土的复合碱渣土力学特性探究[J]. 建筑材料学报, 2023, 26(2): 206-214. WANG Y Z, SUN C P, WANG X, et al. Mechanical properties of composite soda residue soil mixed with fly ash and soft clay[J]. Journal of Building Materials, 2023, 26(2): 206-214 (in Chinese). [9] 张惠灵, 徐克猛, 陈永亮, 等. 利用建筑垃圾和碱渣制备蒸压加气混凝土[J]. 环境工程学报, 2019, 13(2): 441-448. ZHANG H L, XU K M, CHEN Y L, et al. Preparation of autoclaved aerated concrete with construction waste and alkali residue[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 441-448 (in Chinese). [10] 张广田, 张艳佳, 李志全, 等. 我国氨碱白泥资源化利用研究进展[J/OL]. 材料导报: 1-19 (2024-10-31) [2024-12-27]. http://kns.cnki.net/kcms/detail/50.1078.TB.20241031.1333.039.html. ZHANG G T, ZHANG Y J, LI Z Q, et al. Research progress on resource utilization of ammonia alkali white mud in China[J/OL]. Materials Reports: 1-19 (2024-10-31) [2024-12-27]. http://kns.cnki.net/kcms/detail/50.1078.TB.20241031.1333.039.html (in Chinese). [11] 刘继中, 赵庆新, 张津瑞, 等. 碱渣-矿渣复合胶凝材料硬化体的微观结构与组成[J]. 建筑材料学报, 2019, 22(6): 872-877. LIU J Z, ZHAO Q X, ZHANG J R, et al. Microstructure and composition of hardened paste of soda residue-slag complex binding materials[J]. Journal of Building Materials, 2019, 22(6): 872-877 (in Chinese). [12] 宋嵘杰. 碱渣-矿渣-电石渣-粉煤灰复合胶凝材料的强度与微观组成[D]. 秦皇岛: 燕山大学, 2020. SONG R J. Strength and microstructure of alkali slag-slag-carbide slag-fly ash composite cementitious material[D]. Qinhuangdao: Yanshan University, 2020 (in Chinese). [13] 许成文. 掺碱渣全固废海工混凝土的制备及抗氯离子侵蚀性能研究[D]. 北京: 北京科技大学, 2022. XU C W. Study on preparation and chloride ion corrosion resistance of solid waste marine concrete mixed with alkali slag[D]. Beijing: University of Science and Technology Beijing, 2022 (in Chinese). [14] 徐 东, 倪 文, 汪群慧, 等. 碱渣复合胶凝材料制备无熟料混凝土[J]. 哈尔滨工业大学学报, 2020, 52(8): 151-160. XU D, NI W, WANG Q H, et al. Preparation of clinker-free concrete by using soda residue composite cementitious material[J]. Journal of Harbin Institute of Technology, 2020, 52(8): 151-160 (in Chinese). [15] 任才富, 王栋民, 房奎圳, 等. 硫铝水泥改性固废基胶凝材料性能与水化进程研究[J/OL]. 材料导报: 1-16 (2024-10-31) [2024-12-27]. http://kns.cnki.net/kcms/detail/50.1078.TB.20241031.1028.019.html. REN C F, WANG D M, FANG K Z, et al. Study on properties and hydration process of solid waste based cementitious materials modified by calcium sulfoaluminate cement[J/OL]. Materials Reports: 1-16 (2024-10-31) [2024-12-27]. http://kns.cnki.net/kcms/detail/50.1078.TB.20241031.1028.019.html (in Chinese). [16] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration of Market Supervision and Administration, National Standardization Management Committee. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Publishing House, 2021 (in Chinese). [17] 国家质量监督检验检疫总局, 国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine, National Standardization Management Committee. Test methods for water requirement of normal consistency, setting time and soundness of the portland cement: GB/T 1346—2011[S]. Beijing: China Standards Publishing House, 2012 (in Chinese). [18] 国家质量监督检验检疫总局, 国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine, National Standardization Management Committee. Method for determination of fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Standards Publishing House, 2005 (in Chinese). [19] 杨医博, 普永强, 严卫军, 等. 碱渣用作砂浆保水剂的试验研究[J]. 材料导报, 2017, 31(20): 114-118. YANG Y B, PU Y Q, YAN W J, et al. An experimental study on applying soda residue to water retention of mortar[J]. Materials Review, 2017, 31(20): 114-118 (in Chinese). [20] FU S F, LI Z Q, ZHANG G T, et al. Study on characteristics of ammonia alkali white mud and mechanical properties of preparation of fluid solidified soil[J]. Frontiers in Materials, 2024, 11: 1390421. [21] 肖柏林, 苗胜军, 高 谦, 等. 冶金渣胶结材料对超细全尾砂固化特性的影响[J]. 中国有色金属学报, 2022, 32(4): 1152-1163. XIAO B L, MIAO S J, GAO Q, et al. Effect of metallurgical slag cementitious material on solidification characteristics of ultra-fine tailings backfill[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(4): 1152-1163 (in Chinese). [22] 安树好, 刘娟红, 张月月, 等. 矿渣粉与超细铁尾矿粉在无熟料固结体中的协同水化机制[J]. 材料导报, 2023, 37(22): 117-126. AN S H, LIU J H, ZHANG Y Y, et al. Synergistic hydration mechanism of slag powder and ultrafine iron tailings powder in non-clinker consolidated body[J]. Materials Reports, 2023, 37(22): 117-126 (in Chinese). [23] 吴元旦, 饶 娜, 石金明, 等. 碳酸钙热分解动力学特性分析[J]. 能源研究与管理, 2023(4): 99-105. WU Y D, RAO N, SHI J M, et al. Progress and recent trend of calcium-looping carbon capture technology in cement industry[J]. Energy Research and Management, 2023(4): 99-105 (in Chinese). [24] 张广田, 张艳佳, 林双艮, 等. 钼尾矿耦合矿粉水泥基材料制备及其水化机理[J/OL]. 矿产综合利用: 1-10 (2024-01-18) [2024-12-27]. http://kns.cnki.net/kcms/detail/51.1251.TD.20240117.1522.002.html. ZHANG G T, ZHANG Y J, LIN S G, et al. Preparation and hydration mechanism of molybdenum tailings coupled with slag powder cement-based materials[J/OL]. Multipurpose Utilization of Mineral Resources: 1-10 (2024-01-18)[2024-12-27]. http://kns.cnki.net/kcms/detail/51.1251.TD.20240117.1522.002.html (in Chinese). [25] 李 颖, 吴保华, 倪 文, 等. 矿渣-钢渣-石膏体系早期水化反应中的协同作用[J]. 东北大学学报(自然科学版), 2020, 41(4): 581-586. LI Y, WU B H, NI W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 581-586 (in Chinese). [26] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). |