[1] 楼法生, 徐 喆, 黄 贺, 等. 江西低品位超大型花岗岩云母型锂矿地质特征及找矿意义[J]. 东华理工大学学报(自然科学版), 2023, 46(5): 425-436. LOU F S, XU Z, HUANG H, et al. Geological characteristics and prospecting significance of low grade super large granite mica-type lithium deposits in Jiangxi Province[J]. Journal of East China University of Technology (Natural Science), 2023, 46(5): 425-436 (in Chinese). [2] ZHANG Y Q, MA B Z, LV Y W, et al. An effective method for directly extracting lithium from α-spodumene by activated roasting and sulfuric acid leaching[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 540-550. [3] GUAN J, ZHOU Z Y, LI N, et al. Extracting lithium from the H2SO4 leaching solution of bauxitic claystone via co-precipitation methods without addition of Al source[J]. Chemical Engineering Journal Advances, 2021, 9: 100. [4] 陈 祺, 舒立旻, 贺 玲, 等. 江西省锂矿资源分布特征及其研究工作展望[J]. 矿产与地质, 2022, 36(2): 234-241. CHEN Q, SHU L M, HE L, et al. Distribution characteristics of lithium mineral resources in Jiangxi and discussion of the future research emphases[J]. Mineral Resources and Geology, 2022, 36(2): 234-241 (in Chinese). [5] 胡振琪, 赵艳玲, 毛 缜. 煤矸石规模化生态利用原理与关键技术[J]. 煤炭学报, 2024, 49(2): 978-987. HU Z Q, ZHAO Y L, MAO Z. Principles and key technologies for the large-scale ecological utilization of coal gangue[J]. Journal of China Coal Society, 2024, 49(2): 978-987 (in Chinese). [6] 杜盛静, 奎明红, 宋顺喜, 等. 固体废弃物基造纸填料的研究及应用现状[J]. 中国造纸, 2024, 43(7): 199-206. DU S J, KUI M H, SONG S X, et al. Research and application status of solid waste-based paper fillers[J]. China Pulp & Paper, 2024, 43(7): 199-206 (in Chinese). [7] 刘 潮, 水中和, 高 旭, 等. 碱激发煤矸石-高炉矿渣复合材料性能评价[J]. 硅酸盐通报, 2020, 39(9): 2877-2884. LIU C, SHUI Z H, GAO X, et al. Performance evaluation of alkali-activated coal gangue-blast furnace slag composite[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2877-2884 (in Chinese). [8] 周 政. 聚丙烯纤维洞渣泡沫混凝土的制备及性能分析[J]. 材料导报, 2024, 38(增刊2): 203-211. ZHOU Z. Preparation and performance analysis of polypropylene fiber slag foam concrete[J]. Materials Reports, 2024, 38(supplement 2): 203-211 (in Chinese). [9] 李艳艳, 杜晓丽, 王浩伟, 等. 硅灰-聚丙烯纤维双掺混凝土的动静态力学性能[J]. 硅酸盐通报, 2024, 43(9): 3320-3329. LI Y Y, DU X L, WANG H W, et al. Dynamic and static mechanical properties of silica fume-polypropylene fiber double doped concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3320-3329 (in Chinese). [10] 虎积元, 盛冬发, 秦飞飞, 等. 基于DIC方法的混杂纤维增强再生粗骨料混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(10): 3745-3754. HU J Y, SHENG D F, QIN F F, et al. Mechanical properties of hybrid fiber-reinforced recycled coarse aggregate concrete based on DIC method[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3745-3754 (in Chinese). [11] 姚贤华, 郭晓宁, 韩瑞聪, 等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报, 2024, 41(3): 1402-1419. YAO X H, GUO X N, HAN R C, et al. Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1402-1419 (in Chinese). [12] 夏冬桃, 喻诗汀, 李 彪, 等. 钢纤维增强碱矿渣再生混凝土的力学性能及碳排放评价[J]. 建筑材料学报, 2024, 27(10): 938-945. XIA D T, YU S T, LI B, et al. Mechanical properties and carbon emission assessment of steel fiber reinforced alkali-activated slag recycled aggregate concrete[J]. Journal of Building Materials, 2024, 27(10): 938-945 (in Chinese). [13] GRANJU J L, ULLAH BALOUCH S. Corrosion of steel fibre reinforced concrete from the cracks[J]. Cement and Concrete Research, 2005, 35(3): 572-577. [14] QIU J S, HUO Y, FENG Z P, et al. Study on the modification effect and mechanism of a compound mineral additive and basalt fiber on coal gangue concrete[J]. Buildings, 2023, 13(11): 2756. [15] 姜天华, 莫定聪, 万聪聪, 等. 玄武岩橡胶混凝土基本力学性能及受压应力-应变曲线[J]. 硅酸盐通报, 2023, 42(11): 4063-4071+4121. JIANG T H, MO D C, WAN C C, et al. Basic mechanical properties and compressive stress-strain curves of basalt rubber concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 4063-4071+4121 (in Chinese). [16] 查文华, 张晓丽, 张文鑫, 等. 玄武岩纤维煤矸石混凝土力学性能试验研究[J]. 混凝土, 2023(4): 110-114. ZHA W H, ZHANG X L, ZHANG W X, et al. Experimental study on mechanical properties of basalt fiber coal gangue concrete[J]. Concrete, 2023(4): 110-114 (in Chinese). [17] ASGHAR M, JAVED M F, KHAN M I, et al. Empirical models for compressive and tensile strength of basalt fiber reinforced concrete[J]. Scientific Reports, 20, 13(1): 19909. [18] SAGAR B, SIVAKUMAR M V N. Study on basalt fiber reinforced concrete: mechanical and microstructural properties and analytical modelling of compressive stress-strain curves[J]. European Journal of Environmental and Civil Engineering, 2023, 27(5): 2088-2115. [19] 石旭东, 汪金满, 柴旭晖, 等. 玄武岩纤维增强的轻集料混凝土力学特性分析[J]. 兰州工业学院学报, 2024, 31(3): 20-24. SHI X D, WANG J M, CHAI X H, et al. Study on mechanical properties of lightweight aggregate concrete reinforced with basalt fibers[J]. Journal of Lanzhou Institute of Technology, 2024, 31(3): 20-24 (in Chinese). [20] 吴艳丽, 王丹净. 玄武岩纤维对煤矸石混凝土抗扭性能的影响[J]. 矿产综合利用, 2024(2): 36-40. WU Y L, WANG D J. Influence of basalt fiber on torsion resistance of gangue concrete[J]. Multipurpose Utilization of Mineral Resources, 2024(2): 36-40 (in Chinese). [21] 田 颖, 吴世超, 李京军, 等. 基于响应面法的碱激发矿渣-粉煤灰砂浆配比优化[J]. 硅酸盐通报, 2024, 43(11): 4177-4184. TIAN Y, WU S C, LI J J, et al. Optimization of mix ratio of alkali-activated slag-fly ash mortar based on response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(11): 4177-4184 (in Chinese). [22] 翟 宸, 张庆年, 黄剑锋, 等. 基于响应面法的石灰石煅烧黏土复合胶凝材料体系优化设计和试验研究[J]. 硅酸盐通报, 2024, 43(10): 3677-3685. ZHAI C, ZHANG Q N, HUANG J F, et al. Optimal design and experimental study on limestone calcined clay composite cementitious material system based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3677-3685 (in Chinese). [23] 姚志鑫, 穆川川, 单俊鸿, 等. 基于裹浆工艺的煤矸石混凝土性能研究[J]. 硅酸盐通报, 2023, 42(2): 587-597. YAO Z X, MU C C, SHAN J H, et al. Performance of coal gangue concrete based on slurry wrapping technology[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 587-597 (in Chinese). [24] GAO S, ZHAO G H, GUO L H, et al. Utilization of coal gangue as coarse aggregates in structural concrete[J]. Construction and Building Materials, 2021, 268: 12121. [25] 李 建, 马腾飞, 岑祖妹, 等. 煤矸石混凝土受压性能研究[J]. 科技创新与应用, 2023, 13(33): 61-64. LI J, MA T F, CEN Z M, et al. Study on compressive properties of coal gangue concrete[J]. Technology Innovation and Application, 2023, 13(33): 61-64 (in Chinese). [26] 王 雪, 王 恒, 王 强. 我国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24): 63-67. WANG X, WANG H, WANG Q. Research progress on resource utilization of lithium slag in China[J]. Materials Reports, 2022, 36(24): 63-67 (in Chinese). [27] 张延年, 李云凯, 林吉森, 等. 锂渣基多固废掺和料力学性能及水化机理研究[J]. 非金属矿, 2023, 46(6): 78-81. ZHANG Y N, LI Y K, LIN J S, et al. Study on mechanical properties and hydration mechanism of lithium slag based solid waste admixture[J]. Non-Metallic Mines, 2023, 46(6): 78-81 (in Chinese). [28] 王奕仁. 锂渣的火山灰活性评价及其复合胶凝材料微结构特性研究[D]. 北京: 中国矿业大学(北京), 2019. WANG Y R. Evaluation of pozzolanic activity of lithium slag and study on microstructure characteristics of its composite cementitious materials[D]. Beijing: China University of Mining & Technology, Beijing, 2019 (in Chinese). [29] 宋紫薇, 于 江, 秦拥军, 等. 预拌掺锂渣再生混凝土抗压: 劈裂抗拉试验研究[J]. 混凝土, 2019(1): 136-139+160. SONG Z W, YU J, QIN Y J, et al. Experimental study on compression and splitting tensile test of recycled concrete with pre-mixed lithium slag[J]. Concrete, 2019(1): 136-139+160 (in Chinese). [30] HUO L, BI J, ZHAO Y, et al. Constitutive model of steelfiber reinforced concrete by coupling the fiber incliningand spacing effect[J]. Construction and Building Materials, 2021, 280: 1224. [31] XIE L, ZHOU Y S, XIAO S H, et al. Research on basalt fiber reinforced phosphogypsum-based composites based on single factor test and RSM test[J]. Construction and Building Materials, 2022, 316: 126084. [32] 马一平, 余少同, 游 璐, 等. 纤维参数对水泥基材料减裂效果的影响[J]. 建筑材料学报, 2018, 21(5): 797-80. MA Y P, YU S T, YOU L, et al. Effect of fiber parameters on crack reduction of cement based materials[J]. Journal of Building Materials, 2018, 21(5): 797-80 (in Chinese). |