[1] GUO Q, WEI M, WU H, et al. Strength and micro-mechanism of MK-blended alkaline cement treated high plasticity clay[J]. Construction and Building Materials, 2020, 236: 117567. [2] HASSAN A, ARIF M, SHARIQ M. A review of properties and behaviour of reinforced geopolymer concrete structural elements: a clean technology option for sustainable development[J]. Journal of Cleaner Production, 2020, 245: 118762. [3] WU H L, JIN F, BO Y L, et al. Leaching and microstructural properties of lead contaminated Kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests[J]. Construction and Building Materials, 2018, 172: 626-634. [4] WU D Z, ZHANG Z L, CHEN K Y, et al. Experimental investigation and mechanism of fly ash/slag-based geopolymer-stabilized soft soil[J]. Applied Sciences, 2022, 12(15): 7438. [5] TAN H B, ZHANG X, HE X Y, et al. Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste[J]. Journal of Cleaner Production, 2018, 205: 536-551. [6] CHEN D, HU X, SHI L, et al. Synthesis and characterization of zeolite X from lithium slag[J]. Applied Clay Science, 2012, 59/60: 148-151. [7] HE Y, CHEN Q S, QI C C, et al. Lithium slag and fly ash-based binder for cemented fine tailings backfill[J]. Journal of Environmental Management, 2019, 248: 109282. [8] 张兰芳, 陈剑雄, 李世伟. 碱激发矿渣-锂渣混凝土试验研究[J]. 建筑材料学报, 2006, 9(4): 488-492. ZHANG L F, CHEN J X, LI S W. Examination study of alkali-activated slag-lithium slag concrete[J]. Journal of Building Materials, 2006, 9(4): 488-492 (in Chinese). [9] LI J Z, LIAN P H, HUANG S W, et al. Recycling of lithium slag extracted from lithium mica by preparing white Portland cement[J]. Journal of Environmental Management, 2020, 265: 110551. [10] HE Z H, DU S G, CHEN D. Microstructure of ultra high performance concrete containing lithium slag[J]. Journal of Hazardous Materials, 2018, 353: 35-43. [11] QIN Y J, CHEN J J, LI Z X, et al. The mechanical properties of recycled coarse aggregate concrete with lithium slag[J]. Advances in Materials Science and Engineering, 2019, 2019: 8974625. [12] NATH S K, MAITRA S, MUKHERJEE S, et al. Microstructural and morphological evolution of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 111: 758-765. [13] ROSTAMI M, BEHFARNIA K. The effect of silica fume on durability of alkali activated slag concrete[J]. Construction and Building Materials, 2017, 134: 262-268. [14] WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of the one-part slag-fly ash based geopolymer stabilized muddy clay[J]. Rock Soil Mech, 2021, 42(9): 647-655. [15] RIVERA J, OROBIO A, CRISTELO N, et al. Fly ash-based geopolymer as A4 type soil stabiliser[J]. Transportation Geotechnics, 2020, 25: 100409. [16] SALIMI M, GHORBANI A. Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers[J]. Applied Clay Science, 2020, 184: 105390. [17] CHOUBEY P K, KIM M S, SRIVASTAVA R R, et al. Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: from mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. [18] 王奕仁, 王栋民, 赵计辉, 等. 锂渣-CaO胶凝体系的火山灰反应性研究[J]. 硅酸盐通报, 2020, 39(8): 2501-2507. WANG Y R, WANG D M, ZHAO J H, et al. Pozzolanic reactivity of lithium slag-CaO cementitious system[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2501-2507 (in Chinese). [19] LUO Q, LIU Y T, DONG B Q, et al. Lithium slag-based geopolymer synthesized with hybrid solid activators[J]. Construction and Building Materials, 2023, 365: 130070. [20] 李保亮, 尤南乔, 曹瑞林, 等. 锂渣粉的组成及在水泥浆体中的物理与化学反应特性[J]. 材料导报, 2020, 34(10): 10046-10051. LI B L, YOU N Q, CAO R L, et al. Composition of lithium slag powder and its physical and chemical reaction characteristics in cement paste[J]. Materials Reports, 2020, 34(10): 10046-10051 (in Chinese). [21] ZHOU Y F, LI J S, LU J X, et al. Recycling incinerated sewage sludge ash (ISSA) as a cementitious binder by lime activation[J]. Journal of Cleaner Production, 2020, 244: 118856. [22] REDDY M S, DINAKAR P, RAO B H. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete[J]. Journal of Building Engineering, 2018, 20: 712-722. [23] LIU Z, WANG J X, JIANG Q K, et al. A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag[J]. Journal of Cleaner Production, 2019, 225: 1184-1193. [24] 杨振甲, 何 猛, 吴 杨, 等. 矿渣-粉煤灰地聚物固化淤泥力学性能和路用性能研究[J]. 硅酸盐通报, 2022, 41(2): 693-703+724. YANG Z J, HE M, WU Y, et al. Mechanical properties and road performance of slag-fly ash geopolymer stabilized sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693-703+724 (in Chinese). [25] CONG P, OUYANG Z, HOU R X, et al. Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils[J]. Soil & Tillage Research, 2017, 168: 33-41. [26] YAO J L, QIU H J, HE H, et al. Application of a soft soil stabilized by composite geopolymer[J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 04021018. [27] 金胜赫, 王修山, 吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究[J]. 工程地质学报, 2023, 31(2): 397-408. JIN S H, WANG X S, WU Y P. Study on modification of marine clay treated with new gdc soil stabilizer[J]. Journal of Engineering Geology, 2023, 31(2): 397-408 (in Chinese). [28] JEON D, JUN Y B, JEONG Y, et al. Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated class F fly ash system[J]. Cement and Concrete Research, 2015, 67: 215-225. [29] 董必钦, 罗小龙, 田凯歌, 等. 碱激发锂渣人造骨料的制备和性能表征[J]. 材料导报, 2021, 35(15): 15011-15016. DONG B Q, LUO X L, TIAN K G, et al. Preparation and characterization of alkali-activated lithium slag-based artificial aggregates[J]. Materials Reports, 2021, 35(15): 15011-15016 (in Chinese). |