[1] 刘 石, 杨 毅, 胡亚轩, 等. 典型储电方式的结构特点及碳中和愿景下的发展分析[J]. 能源与环保, 2022, 44(1): 215-221+229. LIU S, YANG Y, HU Y X, et al. Structure characteristics and development analysis under carbon neutrality vision of typical power storage modes[J]. China Energy and Environmental Protection, 2022, 44(1): 215-221+229 (in Chinese). [2] 王 雪, 王 恒, 王 强. 我国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24): 63-73. WANG X, WANG H, WANG Q. Research progress on resource utilization of lithium slag in China[J]. Materials Reports, 2022, 36(24): 63-73 (in Chinese). [3] 刘长有, 卢金山. 锂渣理化特性及其资源化利用研究进展[J]. 化工矿物与加工, 2023, 52(6): 56-64. LIU C Y, LU J S. Research progress on physical and chemical properties of lithium slag and its resource utilization[J]. Industrial Minerals & Processing, 2023, 52(6): 56-64 (in Chinese). [4] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展[J]. 材料导报, 2017, 31(5): 139-144. ZHAI M Y, ZHAO J H, WANG D M. Applying lithium slag powders to cement-based materials as supplementary cementitious component: an overview[J]. Materials Review, 2017, 31(5): 139-144 (in Chinese). [5] HE Y, ZHANG Q L, CHEN Q S, et al. Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder[J]. Construction and Building Materials, 2021, 271: 121567. [6] HE Y, ZHANG G Q, CHEN J, et al. Influence of C-S-Hs-PCE and Na2SO4 on thefluidity and mechanical performance of cement-lithium slag binder[J]. Materials and Structures, 2023, 56(9): 158. [7] ZHAI M Y, ZHAO J H, WANG D M, et al. Hydration properties and kinetic characteristics of blended cement containing lithium slag powder[J]. Journal of Building Engineering, 2021, 39: 102287. [8] TAN H B, LI M G, HE X Y, et al. Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system[J]. Construction and Building Materials, 2021, 267: 120465. [9] ZHANG T, MA B G, TAN H B, et al. Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system[J]. Journal of Environmental Management, 2020, 276: 111274. [10] JAVED U, SHAIKH F U A, SARKER P K. A comprehensive micro-nano investigative approach to study the development of aluminosilicate gel in binary blends of lithium slag geopolymer[J]. Cement and Concrete Composites, 2024, 145: 105338. [11] 张兰芳. 锂渣混凝土的试验研究[J]. 混凝土, 2008(4): 44-46. ZHANG L F. Study on performance of concrete mixed with lithium slag[J]. Concrete, 2008(4): 44-46 (in Chinese). [12] 吴福飞. 锂渣复合胶凝材料的水化特性及硬化混凝土的性能研究[D]. 乌鲁木齐: 新疆农业大学, 2016. WU F F. Study on hydration characteristics of complex binder containing lithium slag and properties of hardened concrete[D].Urumqi: Xinjiang Agricultural University, 2016 (in Chinese). [13] 吴福飞, 侍克斌, 董双快, 等. 掺合料和水胶比对水泥基材料水化产物和力学性能的影响[J]. 农业工程学报, 2016, 32(4): 119-126. WU F F, SHI K B, DONG S K, et al. Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 119-126 (in Chinese). [14] LIU Z, WANG J X, JIANG Q K, et al. A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag[J]. Journal of Cleaner Production, 2019, 225: 1184-1193. [15] ACI 229R. Controlled low-strength materials (CLSM)[R]. Farmington Hills: American Concrete Institute, 2013. [16] LING T C, KALIYAVARADHAN S K, POON C S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling-an overview[J]. Construction and Building Materials, 2018, 158: 535-548. [17] QIAN J S, HU Y Y, ZHANG J K, et al. Evaluation the performance of controlled low strength material made of excess excavated soil[J]. Journal of Cleaner Production, 2019, 214: 79-88. [18] 刘 萌. 建筑渣土制备可控低强材料及性能研究[D]. 北京: 北京建筑大学, 2016. LIU M. Preparation and properties of controlled low-strength materials produced by construction waste[D].Beijing: Beijing University of Civil Engineering and Architecture, 2016 (in Chinese). [19] ALIZADEH V, HELWANY S, GHORBANPOOR A, et al. Design and application of controlled low strength materials as a structural fill[J]. Construction and Building Materials, 2014, 53: 425-431. [20] IBRAHIM M, RAHMAN M K, NAJAMUDDIN S K, et al. A review on utilization of industrial by-products in the production of controlled low strength materials and factors influencing the properties[J]. Construction and Building Materials, 2022, 325: 126704. [21] 汪 伟, 张同生, 陈灿峰, 等. 可控低强度材料(CLSM)性能评价方法分析[J]. 硅酸盐通报, 2021, 40(11): 3634-3643. WANG W, ZHANG T S, CHEN C F, et al. Performance evaluation methods of controlled low-strength materials (CLSM)[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3634-3643 (in Chinese). [22] 张土乔, 王直民, 黄亚东. 控制性低强度材料(CLSM)在管沟回填中的应用[J]. 中国给水排水, 2006, 22(6): 87-91. ZHANG T Q, WANG Z M, HUANG Y D. Application of controlled low strength material (CLSM) in backfilling of pipe trench[J]. China Water & Wastewater, 2006, 22(6): 87-91 (in Chinese). |