[1] SINGH S, NAGAR R, AGRAWAL V. A review on properties of sustainable concrete using granite dust as replacement for river sand[J]. Journal of Cleaner Production, 2016, 126: 74-87. [2] ELMOATY A E M A. Mechanical properties and corrosion resistance of concrete modified with granite dust[J]. Construction and Building Materials, 2013, 47: 743-752. [3] VIJAYALAKSHMI M, SEKAR A, GANESH PRABHU G. Strength and durability properties of concrete made with granite industry waste[J]. Construction and Building Materials, 2013, 46: 1-7. [4] ABUKERSH S, FAIRFIELD C. Recycled aggregate concrete produced with red granite dust as a partial cement replacement[J]. Construction and Building Materials, 2011, 25(10): 4088-4094. [5] GHORBANI S, GHORBANI S, ELMI A, et al. Simultaneous effect of granite waste dust as partial replacement of cement and magnetized water on the properties of concrete exposed to NaCl and H2SO4 solutions[J]. Construction and Building Materials, 2021, 288: 123064. [6] DONG G G, LIU F S, REN S X, et al. The influence of granite powder on mechanics properties of cement mortar[J]. Advanced Materials Research, 2012, 580: 521-527. [7] JAIN A, GUPTA R, CHAUDHARY S. Performance of self-compacting concrete comprising granite cutting waste as fine aggregate[J]. Construction and Building Materials, 2019, 221: 539-552. [8] RAMADJI C, MESSAN A, PRUD’HOMME E. Influence of granite powder on physico-mechanical and durability properties of mortar[J]. Materials, 2020, 13(23): 5406. [9] GUPTA L K, VYAS A K. Impact on mechanical properties of cement sand mortar containing waste granite powder[J]. Construction and Building Materials, 2018, 191: 155-164. [10] PLANK J, GRETZ M. Study on the interaction between anionic and cationic latex particles and Portland cement[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330(2): 227-233. [11] AGGARWAL L, THAPLIYAL P, KARADE S. Properties of polymer-modified mortars using epoxy and acrylic emulsions[J]. Construction and Building Materials, 2005, 21(2): 379-383. [12] ZHANG J W, LI S J, PENG H J. Experimental investigation of multiscale hybrid fibres on the mechanical properties of high-performance concrete[J]. Construction and Building Materials, 2021, 299: 123895. [13] 赵雅明, 张明飞, 张 振, 等. 混杂纤维增强高强混凝土性能研究[J]. 硅酸盐通报, 2022, 41(7): 2299-2307. ZHAO Y M, ZHANG M F, ZHANG Z, et al. Performance of hybrid fiber reinforced high-strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2299-2307 (in Chinese). [14] XIE Y D, LIN X J, LI H F, et al. Effect of polyvinyl alcohol powder on the bonding mechanism of a new magnesium phosphate cement mortar[J]. Construction and Building Materials, 2020, 239: 117871. [15] HE J, ZHU M M, SANG G C, et al. Effect of PVA latex powder and PP fiber on property of self-compacting alkali-activated slag repair mortar[J]. Construction and Building Materials, 2023, 408: 133703. [16] QIN Y, LIU J G, XU C Y, et al. Experimental study and evaluation of bonding properties between fiber and cement matrix under sulfate attack[J]. Journal of Building Engineering, 2023, 76: 107306. [17] 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022. The State Administration for Market Regulation and the National Standardization Administration. Construction sand: GB/T 14684—2022[S] Beijing: China Standard Publishing House, 2022 (in Chinese). [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑材料放射性核素限量: GB 6566—2010[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of China, National Standardization Administration of China. Radionuclide limits for building materials: GB 6566—2010[S]. Beijing: China Standard Publishing House, 2011 (in Chinese). [19] 中华人民共和国建设部. 建筑砂浆基本性能试验方法: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Construction of the People’s Republic of China. Test method for basic performance of building mortar: JGJ/T 70—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [20] PROKOPSKI G, MARCHUK V, HUTS A. Granite dust as a mineral component of a dry cement mortar mixtures[J]. Archives of Civil Engineering, 2020: 81-96. [21] 冯 峥, 李传习, 李海春, 等. 超高性能混凝土湿接缝界面粘结性能[J]. 硅酸盐学报, 2021, 49(11): 2393-2404. FENG Z, LI C X, LI H C, et al. Interfacial bond performance of ultrahigh performance concrete wet joints[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2393-2404 (in Chinese). [22] DONZA H, CABRERA O, IRASSAR E F. High-strength concrete with different fine aggregate[J]. Cement and Concrete Research, 2002, 32(11): 1755-1761. [23] 陈宗燕. 花岗岩石粉超高性能混凝土力学性能及微结构[J]. 公路, 2021, 66(10): 331-339. CHEN Z Y. Mechanical properties and microstructure of granite stone powder ultra-high performance concrete[J]. Highway, 2021, 66(10): 331-339 (in Chinese). [24] LI H J, HUANG F L, CHENG G Z, et al. Effect of granite dust on mechanical and some durability properties of manufactured sand concrete[J]. Construction and Building Materials, 2016, 109: 41-46. [25] QASIM M, LEE C K, ZHANG Y X. An experimental study on interfacial bond strength between hybrid engineered cementitious composite and concrete[J]. Construction and Building Materials, 2022, 356: 129299. [26] 龚亦凡, 陈 萍, 张京旭, 等. 废弃橡胶颗粒对再生骨料砂浆技术性能改良[J]. 硅酸盐学报, 2021, 49(10): 2305-2312. GONG Y F, CHEN P, ZHANG J X, et al. Improvement of engineering properties of recycled aggregate mortar by amending waste rubber particles[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2305-2312 (in Chinese). [27] 中华人民共和国工业和信息化部. 陶瓷砖胶粘剂: JCT 547—2017[S]. 北京: 建材工业出版社, 2017. Ministry of Industry and Information Technology of the People’s Republic of China. Ceramic tile adhesive: JCT 547—2017[S]. Beijing: Building Materials Industry Press, 2017 (in Chinese). [28] 王培铭, 赵国荣, 张国防. 可再分散乳胶粉在水泥砂浆中的作用机理[J]. 硅酸盐学报, 2018, 46(2): 256-262. WANG P M, ZHAO G R, ZHANG G F. Mechanism of redispersible polymer powder in cement mortar[J]. Journal of the Chinese Ceramic Society, 2018, 46(2): 256-262 (in Chinese). [29] SHI C, ZOU X W, WANG P. Influences of EVA and methylcellulose on mechanical properties of Portland cement-calcium aluminate cement-gypsum ternary repair mortar[J]. Construction and Building Materials, 2020, 241: 118035. [30] 鹿 宇, 万小梅, 赵铁军, 等. 环氧树脂改性碱矿渣修补砂浆的黏结性能及微观结构研究[J]. 硅酸盐通报, 2019, 38(4): 1086-1090+1107. LU Y, WAN X M, ZHAO T J, et al. Bonding properties and microstructure of epoxy resin modified repair mortar based on alkali-activated slag[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1086-1090+1107 (in Chinese). [31] WANG M, WANG R M, ZHENG S R, et al. Research on the chemical mechanism in the polyacrylate latex modified cement system[J]. Cement and Concrete Research, 2015, 76: 62-69. [32] NGUYEN D D, DEVLIN L P, KOSHY P, et al. Effects of chemical nature of polyvinyl alcohol on early hydration of Portland cement[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1439-1450. [33] WANG M, WANG R M, YAO H, et al. Research on the mechanism of polymer latex modified cement[J]. Construction and Building Materials, 2016, 111: 710-718. [34] 彭家惠, 毛靖波, 张建新, 等. 可再分散乳胶粉对水泥砂浆的改性作用[J]. 硅酸盐通报, 2011, 30(4): 915-919. PENG J H, MAO J B, ZHANG J X, et al. Application of redispersion emulsoid powder in cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 915-919 (in Chinese). [35] 王 茹, 王培铭. 丁苯乳液和乳胶粉对水泥水化产物形成的影响[J]. 硅酸盐学报, 2008, 36(7): 912-919+926. WANG R, WANG P M. Effect of styrene-butadiene rubber latex/powder on cement hydrates[J]. Journal of the Chinese Ceramic Society, 2008, 36(7): 912-919+926 (in Chinese). [36] ÇOLAK A. Properties of plain and latex modified Portland cement pastes and concretes with and without superplasticizer[J]. Cement and Concrete Research, 2005, 35(8): 1510-1521. [37] 孙振平, 杨 洁, 庞 敏, 等. 可再分散乳胶粉对钢渣砂浆性能的影响[J]. 建筑材料学报, 2013, 16(1): 55-59. SUN Z P, YANG J, PANG M, et al. Influence of redispersible emulsion powder on properties of steel slag mortar[J]. Journal of Building Materials, 2013, 16(1): 55-59 (in Chinese). [38] 耿 健, 丁庆军, 孙炳楠, 等. 高阻抗高抗渗混凝土及其微结构特征[J]. 硅酸盐学报, 2010, 38(4): 638-643. GENG J, DING Q J, SUN B N, et al. Microstructural characteristics of concrete with high impedance and impermeability[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 638-643 (in Chinese). [39] 陈东平, 刘 芳, 齐艳涛. 可再分散乳胶粉对硫铁矿尾砂自流平砂浆性能的影响[J]. 材料导报, 2015, 29(16): 115-119. CHEN D P, LIU F, QI Y T. Effects of redispersible polymer powders on properties of pyrite tailings prepared self-leveling mortar[J]. Materials Review, 2015, 29(16): 115-119 (in Chinese). [40] PAIVA H, SILVA L M, LABRINCHA J A, et al. Effects of a water-retaining agent on the rheological behaviour of a single-coat render mortar[J]. Cement and Concrete Research, 2006, 36(7): 1257-1262. [41] 王月明, 唐永志, 刘开伟, 等. 纤维和胶粉对水泥砂浆力学和抗裂性能的影响[J]. 硅酸盐通报, 2018, 37(9): 2775-2781. WANG Y M, TANG Y Z, LIU K W, et al. Effects of fiber and rubber powder on the mechanical and crack resistance of cement mortars[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2775-2781 (in Chinese). [42] 牛恒茂, 武文红, 邢永明, 等. 水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响[J]. 复合材料学报, 2015, 32(4): 1067-1074. NIU H M, WU W H, XING Y M, et al. Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1067-1074 (in Chinese). [43] ZÁRYBNICKÁ L, MACHOTOVÁ J, MÁCOVÁ P, et al. Design of polymeric binders to improve the properties of magnesium phosphate cement[J]. Construction and Building Materials, 2021, 290: 123202. [44] 姚智高, 林 常, 蔡 舒, 等. 粉煤灰对PVA纤维/水泥基体界面作用及复合材料拉伸性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2327-2336. YAO Z G, LIN C, CAI S, et al. Effect of fly ash on PVA fiber/cementitious matrix interfacial interactions and tensile properties of composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2327-2336 (in Chinese). [45] 熊辉霞, 赵文杰. 聚乙烯醇纤维增强水泥基复合材料研究进展[J]. 硅酸盐通报, 2017, 36(6): 1944-1950+1956. XIONG H X, ZHAO W J. Research development of polyvinyl alcohol fiber reinforeced cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1944-1950+1956 (in Chinese). [46] 银英姿, 仇 贝. 聚乙烯醇纤维混凝土力学性能及早期开裂试验研究[J]. 硅酸盐通报, 2019, 38(2): 454-458. YIN Y Z, QIU B. Experimental study on mechanical properties and early cracking of polyvinyl alcohol fiber concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 454-458 (in Chinese). [47] SHEN S Z, ZHUANG J P, YANG Y, et al. Mechanical performances and micro-level properties of basalt and PVA fiber reinforced engineered cementitious composite after high temperatures exposure[J]. Journal of Building Engineering, 2023, 79: 107870. [48] 黄利频, 袁 玲. 聚合物干粉改性水泥砂浆性能及应用研究[J]. 武汉理工大学学报, 2007, 29(10): 15-19. HUANG L P, YUAN L. Research on physical properties of polymers modified cement mortars and their commercial application[J]. Journal of Wuhan University of Technology, 2007, 29(10): 15-19 (in Chinese). [49] ESPINAL M, KANE S, RYAN C, et al. Evaluation of the bonding properties between low-value plastic fibers treated with microbially-induced calcium carbonate precipitation and cement mortar[J]. Construction and Building Materials, 2022, 357: 129331. [50] 张 鹏, 亢洛宜, 魏 华, 等. PVA纤维和纳米SiO2对地聚合物砂浆断裂性能的影响[J]. 建筑材料学报, 2019, 22(6): 986-992. ZHANG P, KANG L Y, WEI H, et al. Effect of PVA fiber and nano-SiO2 on fracture properties of geopolymer mortar[J]. Journal of Building Materials, 2019, 22(6): 986-992 (in Chinese). |