[1] AUDENAERT K, YUAN Q, DE SCHUTTER G. On the time dependency of the chloride migration coefficient in concrete[J]. Construction and Building Materials, 2010, 24(3): 396-402. [2] 邱继生,张如意,侯博雯,等.干湿循环下煤矸石混凝土孔结构特性及抗氯离子侵蚀机理[J].硅酸盐通报,2021,40(12):3993-4001. QIU J S, ZHANG R Y, HOU B W, et al. Pore structure characteristics and chloride ion corrosion resistance mechanism of coal gangue concrete under drying-wetting cycles[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 3993-4001 (in Chinese). [3] STAMBAUGH N D, BERGMAN T L, SRUBAR W V III. Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete[J]. Construction and Building Materials, 2018, 161: 236-245. [4] SONG H W, LEE C H, ANN K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement and Concrete Composites, 2008, 30(2): 113-121. [5] KIM Y J, GADDAFI A, YOSHITAKE I. Permeable concrete mixed with various admixtures[J]. Materials & Design, 2016, 100: 110-119. [6] SAKAI Y Y. Relationship between pore structure and chloride diffusion in cementitious materials[J]. Construction and Building Materials, 2019, 229: 116868. [7] 方赵峰,王建东,边 帆,等.混凝土的水渗透性与其微观结构的关系研究[J].混凝土,2018(8):10-12. FANG Z F, WANG J D, BIAN F, et al. Research on the relationship between water permeability and microstructure of concrete[J]. Concrete, 2018(8): 10-12 (in Chinese). [8] ZHANG J Z, WU J, ZHANG Y R, et al. Time-varying relationship between pore structures and chloride diffusivity of concrete under the simulated tidal environment[J]. European Journal of Environmental and Civil Engineering, 2022, 26(2): 501-518. [9] AHMAD S, AZAD A K. An exploratory study on correlating the permeability of concrete with its porosity and tortuosity[J]. Advances in Cement Research, 2013, 25(5): 288-294. [10] LI P P, SU D G, WANG S N, et al. Influence of binder composition and concrete pore structure on chloride diffusion coefficient in concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2011, 26(1): 160-164. [11] SUN G W, SUN W, ZHANG Y S, et al. Relationship between chloride diffusivity and pore structure of hardened cement paste[J]. Journal of Zhejiang University-SCIENCE A, 2011, 12(5): 360-367. [12] ZENG Q, LI K F, FEN-CHONG T, et al. Pore structure characterization of cement pastes blended with high-volume fly-ash[J]. Cement and Concrete Research, 2012, 42(1): 194-204. [13] YANG C C, CHO S W, WANG L C. The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials[J]. Materials Chemistry and Physics, 2006, 100(2/3): 203-210. [14] KROEHONG W, DAMRONGWIRIYANUPAP N, SINSIRI T, et al. The effect of palm oil fuel ash as a supplementary cementitious material on chloride penetration and microstructure of blended cement paste[J]. Arabian Journal for Science and Engineering, 2016, 41(12): 4799-4808. [15] 商玉娟,李宗利,王 杭,等.渗透孔隙水压对混凝土孔结构影响的试验研究[J].混凝土,2017(7):11-14. SHANG Y J, LI Z L, WANG H, et al. Experimental study on pore structure of concrete due to permeability pore water pressure[J]. Concrete, 2017(7): 11-14 (in Chinese). [16] 邓 雷,温 勇,韩国旗,等.锂渣混凝土孔分形维数与气体渗透性能关系研究[J].混凝土,2017(5):68-71. DENG L, WEN Y, HAN G Q, et al. Relationship between pore fractal dimension and air permeability of lithium slag concrete[J]. Concrete, 2017(5): 68-71 (in Chinese). [17] 汤玉娟,左晓宝,殷光吉.基于孔结构参数的混凝土气体扩散模型[J].建筑材料学报,2015,18(6):976-981. TANG Y J, ZUO X B, YIN G J. Gas diffusion model in concrete based on pore structural parameters[J]. Journal of Building Materials, 2015, 18(6): 976-981 (in Chinese). [18] 张建波,文俊强,王宏霞,等.混凝土孔体积分形维数及其与氯离子渗透性和强度的关系[J].混凝土,2010(5):7-9. ZHANG J B, WEN J Q, WANG H X, et al. Pore volume fractal dimension of concrete and its relationship between chloride diffusivity and strength[J]. Concrete, 2010(5): 7-9 (in Chinese). [19] 邵中军,张建波,刘 江,等.混凝土孔隙分形特征与氯离子渗透理论研究[J].混凝土,2012(9):1-2+8. SHAO Z J, ZHANG J B, LIU J, et al. Theoretical research on concrete pore fractal characteristic and chloride diffusivity[J]. Concrete, 2012(9): 1-2+8 (in Chinese). [20] 王小垚,曾联波,周三栋,等.低阶煤储层微观孔隙结构的分形模型评价[J].天然气地球科学,2018,29(2):277-288. WANG X Y, ZENG L B, ZHOU S D, et al. Assessment of micro-pore structure fractal model evaluation of low-rank coal reservoirs[J]. Natural Gas Geoscience, 2018, 29(2): 277-288 (in Chinese). [21] 尹志军,盛国君,王春光.基于压汞法的煤岩各段孔隙的分形特征[J].金属矿山,2011(9):54-57. YIN Z J, SHENG G J, WANG C G. Fractal dimension of varied pore within coal based on mercury intrusion method[J]. Metal Mine, 2011(9): 54-57 (in Chinese). [22] 刘海洋,朱玉雯,王愿洁,等.活化过程中煤基活性炭的孔结构特性及分形特征[J].电力科技与环保,2021,37(5):15-21. LIU H Y, ZHU Y W, WANG Y J, et al. Pore structure and fractal characteristics of coal-based activated carbons during activation process[J]. Electric Power Technology and Environmental Protection, 2021, 37(5): 15-21 (in Chinese). [23] 张俊芝,李登辉,陈 伟,等.潮差环境下混凝土氯离子扩散时变性与孔隙分形特征的关系[J].自然灾害学报,2016,25(6):51-57. ZHANG J Z, LI D H, CHEN W, et al. Relationship between time-variability of chlorion diffusion in concrete and pore fractal characteristic under tidal range environment[J]. Journal of Natural Disasters, 2016, 25(6): 51-57 (in Chinese). [24] 冯庆革,梁正义,郭建强,等.孔隙分形修正的混凝土中氯离子扩散系数[J].土木建筑与环境工程,2015,37(4):51-58. FENG Q G, LIANG Z Y, GUO J Q, et al. Chloride diffusion coefficient modified by pore fractal theory in concrete[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(4): 51-58 (in Chinese). [25] 王春晓,董建明,李得胜.基于孔结构分形的混杂纤维混凝土抗冻性能研究[J].硅酸盐通报,2021,40(11):3608-3616. WANG C X, DONG J M, LI D S. Research on frost resistance of hybrid fiber reinforced concrete based on fractal theory of pore structure[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3608-3616 (in Chinese). [26] 周胜波.水泥混凝土的孔结构分形特征研究[J].混凝土,2016(1):56-58. ZHOU S B. Research on pore structure fractal characteristics of cement concrete[J]. Concrete, 2016(1): 56-58 (in Chinese). [27] LIU R C, JIANG Y J, LI B, et al. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks[J]. Computers and Geotechnics, 2015, 65: 45-55. [28] FRIESEN W I, MIKULA R J. Fractal dimensions of coal particles[J]. Journal of Colloid and Interface Science, 1987, 120(1): 263-271. [29] CAI J C, WEI W, HU X Y, et al. Fractal characterization of dynamic fracture network extension in porous media[J]. Fractals, 2017, 25(2): 1750023. [30] WANG L, JIN M M, GUO F X, et al. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete[J]. Fractals, 2021, 29(2): 2140003. [31] YU B M, LI J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372. [32] LU G W, WANG J L, WEI C T, et al. Pore fractal model applicability and fractal characteristics of seepage and adsorption pores in middle rank tectonic deformed coals from the Huaibei coal field[J]. Journal of Petroleum Science and Engineering, 2018, 171: 808-817. [33] 元成方,牛荻涛,陈 娜,等.碳化对混凝土微观结构的影响[J].硅酸盐通报,2013,32(4):687-691+707. YUAN C F, NIU D T, CHEN N, et al. Influence of carbonation on the microstructure of concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(4): 687-691+707 (in Chinese). [34] LOTFI S, EGGIMANN M, WAGNER E, et al. Performance of recycled aggregate concrete based on a new concrete recycling technology[J]. Construction and Building Materials, 2015, 95: 243-256. [35] LI Y, LI J Q. Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete[J]. Construction and Building Materials, 2014, 53: 511-516. [36] 黄德崖,刘静静.荷载和干湿循环共同作用下混凝土中氯离子扩散特性研究[J].河南科技,2021,40(19):84-87. HUANG D Y, LIU J J. Diffusion characteristics study of chloride ions in concrete under loads and dry-wet cycles[J]. Henan Science and Technology, 2021, 40(19): 84-87 (in Chinese). [37] 刘斯凤,孙振平,蒋正武,等.海砂混凝土的抗氯离子性能研究[J].新型建筑材料,2020,47(1):18-20+46. LIU S F, SUN Z P, JIANG Z W, et al. Study on chloride resistance of sea sand concrete[J]. New Building Materials, 2020, 47(1): 18-20+46 (in Chinese). [38] COLLEPARDI M, MARCIALIS A, TURRIZIANI R. Penetration of chloride ions into cement pastes and concretes[J]. Journal of the American Ceramic Society, 1972, 55(10): 534-535. [39] 陈 妤,李创创,李国浩,等.氧化石墨烯改性水泥砂浆抗氯离子渗透性能[J].硅酸盐通报,2022,41(5):1539-1546. CHEN Y, LI C C, LI G H, et al. Chloride penetration resistance of cement mortar modified by graphene oxide[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1539-1546 (in Chinese). [40] 孙 明,孙丛涛,张 鹏,等.氯离子掺入方式及偏高岭土对砂浆氯离子结合性能的影响[J].硅酸盐通报,2021,40(4):1154-1161+1177. SUN M, SUN C T, ZHANG P, et al. Effects of chloride introduced way and metakaolin on chloride binding capacity of mortar[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1154-1161+1177 (in Chinese). [41] 王 涛,储洪强,丁天云,等.复杂环境下粉煤灰水泥石的离子浓度分布与维氏硬度劣化规律[J].硅酸盐通报,2021,40(12):4011-4019+4029. WANG T, CHU H Q, DING T Y, et al. Ion concentration distribution and vickers hardness degradation of fly ash cement pastes in complicated environment[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4011-4019+4029 (in Chinese). [42] 龙广成,陈书苹,谢友均.氯离子在砂浆中扩散的影响因素[J].建筑材料学报,2008,11(3):328-333. LONG G C, CHEN S P, XIE Y J. Factors affecting diffusion of chloride ion in mortar system[J]. Journal of Building Materials, 2008, 11(3): 328-333 (in Chinese). [43] 赵隆柳,谢 军,林 鑫,等.PVA对改善再生混凝土抗氯离子渗透性能试验研究[J].硅酸盐通报,2020,39(7):2127-2133. ZHAO L L, XIE J, LIN X, et al. Experimental study on improvement to chloride ion impermeability of recycled aggregate concrete by mixing PVA[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2127-2133 (in Chinese). [44] 魏 康,李 犇,孙 峤.玄武岩纤维改善再生混凝土抗氯离子渗透性能研究[J].硅酸盐通报,2022,41(5):1656-1662. WEI K, LI B, SUN Q. Improving chloride ion penetration resistance of recycled concrete by basalt fiber[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1656-1662 (in Chinese). [45] 孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨:哈尔滨工业大学,2006. MENG Q C. Research of influencing factor between concrete durability and pore structure[D]. Harbin: Harbin Institute of Technology, 2006 (in Chinese). [46] ZHANG B Q, LI S F. Determination of the surface fractal dimension for porous media by mercury porosimetry[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1383-1386. |